Zwangsfreie Richtungsmessungen

Force-free Angle Measurements

Ansgar Brunn

Zusammenfassung

Moderne, digitale, automatisierte Tachymeter bieten einen flexiblen Einsatz und erfordern gleichzeitig flexible Rechenverfahren. Einschränkungen der tradierten Auswerteverfahren in Bezug auf die Richtungsmessungen in den Zenit und in Richtung der Nullrichtung (Nullpunkt des Teilkreises) sind dabei nicht akzeptabel. Daher wird in diesem Beitrag ein neuer, auf Richtungsvektoren basierender Umgang mit Richtungsmessungen vorgeschlagen. Der direkte Vergleich des tradierten Verfahrens mit dem neuen Ansatz zeigt das neu gewonnene Potential, letztlich aber auch die Notwendigkeit, das Geodätische Rechnen neu zu erfinden.

Schlüsselwörter: Tachymeter, Richtungsmessung, Polarkoordinaten, Ausgleichungsrechnung

Summary

Modern, digital, automated total stations offer flexible use and at the same time require flexible calculation methods. Limitations of the traditional evaluation methods with regard to the angle measurements into the zenith and in the zero direction (zero point of the horizontal circle) are not acceptable. Therefore, a new handling of direction measurements based on direction vectors is proposed in this paper. The direct comparison of the traditional method with the new approach shows the newly gained potential, but ultimately also the necessity to reinvent geodetic computing.

Keywords: total station, angle measurements, polar coordinates, parameter estimation

1 Einleitung

1.1 Motivation

Der Tachymeter ist in der modernen, digitalen Vermessung immer noch *das* wichtigste Arbeitsgerät schlechthin. Tagtäglich werden mit Tachymetern u. a. unzählige Richtungen, also kombinierte Horizontal- und Vertikalrichtungen gemessen. Zur Auswertung der Richtungsmessungen werden tradierte Rechenschemata eingesetzt (z. B. Witte 2011), die durch eine geschickte und erprobte Abfolge von Rechenschritten in der Regel eine erfolgreiche Auswertung ermöglichen. Durch eine günstige Wahl der Ausrichtung der Nullrichtung (Orientierung) des Horizontalkreises des Tachymeters und der praktischen Unmöglichkeit, Punkte im Zenit anzuzielen, waren diese Rechenabläufe in sich schlüssig und allgemein anwendbar. Mit dem Aufkommen der automatischen Tachymeter erweitern sich die Fähigkeiten der Tachymeter, da einerseits eine manuelle Ausrichtung der Nullrichtung im Messprozess nicht mehr möglich ist bzw. als einschränkend empfunden wird und spätestens durch die Remotecontroller und den Einbau von digitalen Kameras in den Strahlengang eine optische Anzielung durch das Fernrohr nicht mehr notwendig ist und so auch die Bauart des Tachymeters mit seinem Sockel nicht mehr einschränkt. Abnehmbare und abklappbare Tragbügel (z. B. Leica TS 60, Trimble RTS873) machen den Blick in den Zenit frei.

Besonders im Innenbereich wachsen die Aufgaben mit Building-Information-Modelling (BIM) und einhergehenden vertikalen Zielungen, vor allem zwischen Stockwerken (z. B. Meyer et al. 2021).

Terrestrische Laserscanner sind dabei Vorreiter, die in der gesamten Vollkugel, nur durch den Scannerkörper eingeschränkt, messen können. Hier erfolgt die Auswertung daher oft auch in homogenen Koordinaten (z. B. Gielsdorf et al. 2004, Rietdorf 2005).

Die traditionellen Auswerteverfahren berücksichtigen die Zyklizität der Richtungsmessungen in Gon oder Grad, was für die automatische Auswertung gerade für Horizontalrichtungen in der Nähe der Nullrichtung mindestens aufwändig ist. Spätestens für Messungen im Zenit versagen die tradierten Rechenprozesse jedoch und erzeugen so schon bei der Messplanung Zwänge auf die Messanordnung. Daher wird in diesem Beitrag ein Verfahren vorgeschlagen, das diese Einschränkungen nicht aufweist. Die zusätzlichen Fähigkeiten des neuen Verfahrens werden anhand eines Vergleichs mit dem tradierten Ansatz mit simulierten Daten aufgezeigt.

1.2 Übersicht über den Artikel

Im Beitrag folgen im zweiten Abschnitt einige Grundlagen in der Umrechnung der geodätischen Messungen in Richtungsvektoren und zurück. Dabei ist der Aspekt der Varianz-/Kovarianzfortpflanzung von besonderer Bedeutung für den späteren Vergleich. Im dritten Abschnitt werden beide Rechenmethoden zur Verarbeitung der Richtungsmessungen beschrieben. Der Fokus liegt auf dem neuen, auf Richtungsvektoren basierenden Vorgehen. Abschnitt 4 enthält die Versuche mit simulierten Daten, die Ergebnisse werden in Abschnitt 5 dargestellt und danach diskutiert. Der Beitrag schließt mit einem Fazit und einem Ausblick auf weitere Untersuchungen und das grundsätzliche Potenzial dieses Ansatzes.

2 Grundlagen

Der neue Auswerteansatz überführt die lokalen, polaren Richtungsmessungen in lokale, karthesische Richtungsvektoren, die nach der Verarbeitung wieder zurückgerechnet werden. Es ist wichtig, die Genauigkeiten beim Wechsel der Repräsentation mitzuführen. Daher werden hier kurz die Umrechnungen zwischen der polaren und der karthesischen Repräsentation der Messungen inkl. ihrer Varianz-/ Kovarianzfortpflanzung behandelt. Der Aspekt der Transformation von geodätischen Polarkoordinaten in mathematische Polarkoordinaten wird, ebenso kurz, vorangestellt.

Umrechnung zwischen geodätischen und mathematischen Richtungsmessungen

Zwischen beiden polaren Repräsentationen von Richtungsmessungen lässt sich mit

$$\mathbf{p}_{g} = \begin{pmatrix} h \\ \nu \end{pmatrix} = \begin{pmatrix} 100 \, [gon] - a\rho \\ 100 \, [gon] - e\rho \end{pmatrix}$$
(1)

bzw.

$$\mathbf{p}_{m} = \begin{pmatrix} a \\ e \end{pmatrix} = \begin{pmatrix} \pi/2 - h/\rho \\ \pi/2 - \nu/\rho \end{pmatrix}$$
(2)

mit $\rho = 200[\text{gon}]/\pi$ als Umrechnungskonstante transformieren, mit den Richtungsmessungen (horizontal, vertikal) (*h*, *v*) in Gon und dem Azimut und der Elevation (*a*, *e*) im Bogenmaß. Sofern die geodätischen Messungen unabhängig sind, gilt dies auch für die Messungen im mathematischen System und umgekehrt, wie die Varianz- und Kovarianzfortpflanzung zeigt:

$$\mathbf{D}(\mathbf{p}_{m}) = \begin{pmatrix} \frac{\sigma_{h}^{2}\pi^{2}}{40000[gon^{2}]} & 0\\ 0 & \frac{\sigma_{v}^{2}\pi^{2}}{40000[gon^{2}]} \end{pmatrix}.$$
 (3)

Umrechnung von mathematischen Richtungsmessungen in einen Richtungsvektor

Berechnung eines Richtungsvektors aus mathematischen Polarkoordinaten:

$$\mathbf{r} = (x, y, z)^{T} = \left(\cos(a)\cos(e) - \cos(e)\sin(a) - \sin(e)\right)^{T}$$
(4)

Jacobimatrix für die Berechnung des Richtungsvektors aus den mathematischen Messungen:

$$\mathbf{J}_{mr}(\mathbf{p}_{a}) = \left(\frac{\partial \mathbf{r}}{\partial \mathbf{p}_{m}}\right) = \left(\begin{array}{c}-\cos(e)\sin(a) & -\cos(a)\sin(e)\\\cos(a)\cos(e) & -\sin(a)\sin(e)\\0 & \cos(e)\end{array}\right)^{T} (5)$$

46 | *zfv* 1/2024 149. Jg. | DVW

Varianz- und Kovarianzmatrix bei unkorrelierter gleicher Genauigkeit der mathematischen Messungen $(\mathbf{D}(\mathbf{p}_m) = \sigma^2 \mathbf{I})$:

Umrechnung vom Richtungsvektor in geodätische Richtungsmessungen

Berechnung von mathematischen Polarkoordinaten aus dem Richtungsvektor:

$$\mathbf{p}_{m} = (a,e)^{T} = \begin{pmatrix} \operatorname{atan2}(y,x) \\ \operatorname{atan2}(z,\sqrt{(x)^{2} + (y)^{2}}) \end{pmatrix}$$
(7)

Die Jacobimatrix für die Berechnung der geodätischen Polarkoordinaten aus dem Richtungsvektor folgt unter Nutzung von Gl. (2)

$$J_{rg}(\mathbf{r}) = \left(\frac{\partial p_m}{\partial p_r}\right) = \left(\frac{\frac{200y}{\pi(x^2 + y^2)}}{\frac{200xz}{\pi\sqrt{x^2 + y^2}(x^2 + y^2 + z^2)}} - \frac{\frac{200x}{\pi(x^2 + y^2)}}{\frac{200yz}{\pi\sqrt{x^2 + y^2}(x^2 + y^2 + z^2)}} - \frac{\frac{200\sqrt{x^2 + y^2}}{\pi(x^2 + y^2 + z^2)}}{\pi(x^2 + y^2 + z^2)}\right)$$
(8)

mit $\mathbf{r} = (x, y, z)^{t}$.

Varianz-/Kovarianzfortpflanzungsgesetz für die Umrechnung vom Richtungsvektor in geodätische Richtungsmessungen:

$$\mathbf{D}(\mathbf{p}_{g}) = \mathbf{J}_{rg}(\mathbf{r})\mathbf{D}(\mathbf{r})\mathbf{J}_{rg}(\mathbf{r})^{T}$$
(9)

Daraus lässt sich die Korrelationsmatrix $\mathbf{K}(\mathbf{p}_g)$ (siehe Koch 1986, S. 15) ableiten.

3 Methode

Seien *n* Richtungsmessungen $\mathbf{p}_{g,i} = (h_i, v_i)^T$ mit $i \in \{1 \dots n\}$ gegeben. Zur Reduktion der Auswirkungen von Gerätefehlern kann ohne Beschränkung der Allgemeinheit die Messung von Vollsätzen angenommen werden. Die Auswirkungen von Gerätefehlern auf die mittlere Richtung ist nicht Thema dieses Artikels. Die mittlere Richtung soll durch zwei Verfahren bestimmt werden. Die Ergebnisse sollen verglichen werden.

Für den Vergleich der Schätzung einer mittleren Richtung werden zwei getrennte Rechenwege beschritten. Dazu werden alle geodätischen Richtungsmessungen als gleich genau und unkorreliert angenommen. Die Genauigkeit der mittleren Richtung ist Teil des Schätzergebnisses. Folgende zwei Verfahren werden durchgeführt:

1. Schätzung als Mittelung der geodätischen Richtungsmessungen: Durch eine einfache Mittelbildung werden alle gemessenen Vertikal- und Horizontalrichtungen zum Zielpunkt getrennt gemittelt.

Die Richtungsmessungen der zweiten Lage müssen dazu in die erste Lage überführt werden. Üblicherweise betrachtet man dazu die Vertikalrichtung jeder Zielung. Sofern diese über 200 gon ist, wird die zweite Lage angenommen. Daraufhin wird die entsprechende Vertikalrichtung der ersten Lage berechnet und die Horizontalrichtung um 200 gon erhöht. Abschließend werden alle Richtungen wieder in den Wertebereich [0 gon ... 400 gon[, z. B. durch einen Modulo-Operator, gebracht. Die Mittel der Richtungen lassen sich dann berechnen durch

$$\mathbf{m} = \begin{pmatrix} h_m \\ v_m \end{pmatrix} = \frac{1}{N} \left(\frac{\sum_{i=1}^N h_i}{\sum_{i=1}^N v_i} \right).$$
(10)

Die Varianz- und Kovarianzmatrix ergibt sich als Diagonalmatrix über

$$\mathbf{D}(\mathbf{m}) = \frac{1}{(N-1)} \operatorname{diag}\left(\sum_{i=1}^{N} (h_m - h_i)^2, \sum_{i=1}^{N} (v_m - v_i)^2\right). \quad (11)$$

Die Standardabweichungen folgen als Wurzel aus den Hauptdiagonalelementen der Varianz- und Kovarianzmatrix.

2. Schätzung der mittleren Richtung durch Richtungsvektoren: Die geodätischen Messungen werden dazu in Form der Einheitsrichtungsvektoren gemittelt.

Die geodätischen Messungen werden zunächst in eine mathematische Richtungsrepräsentation transformiert (siehe Gl. (2)), die dann jeweils in den entsprechenden Einheitsrichtungsvektor umgerechnet wird (siehe Gl. (3)). Die Varianz- und Kovarianzmatrix der berechneten Richtungsvektoren ergibt sich aus Gl. (6).

Der optimale mittlere Richtungsvektor wird nach der Methode der kleinsten Quadrate mit Restriktionen geschätzt. Restriktionen dienen in der Parameterschätzung zur Reduktion des Parameterraums durch funktionale Festlegungen zwischen den unbekannten, zu schätzenden Parametern, insbesondere auch dann, wenn Parameter gar nicht durch die Beobachtungen bestimmbar sind. Da die Beobachtungsgleichungen und auch die Restriktion hier nicht linear sind, muss zur Bestimmung der optimalen mittleren Richtung linearisiert werden:

$$\mathbf{f}(\tilde{\boldsymbol{\beta}}) = \mathbf{y} + \mathbf{e} \quad \text{mit} \quad \mathbf{D}(\mathbf{y}) = \sigma_o^2 \mathbf{P}.$$
 (12)

werden die Beobachtungsgleichungen für die unbekannten Parameter linearisiert. Mit den Näherungswerten der unbekannten Parameter $\tilde{\beta}_{o}$. lassen sich Näherungswerte für die Beobachtungen \tilde{y} berechnen:

$$\mathbf{f}\left(\tilde{\boldsymbol{\beta}}\right) = \mathbf{f}\left(\tilde{\boldsymbol{\beta}}_{o}\right) + \mathbf{X}\boldsymbol{\beta} = \tilde{\mathbf{y}} + \mathbf{e}$$
(13)

$$\mathbf{X}\boldsymbol{\beta} = \tilde{\mathbf{y}} - \mathbf{f}\left(\tilde{\boldsymbol{\beta}}_{o}\right) + \mathbf{e} \tag{14}$$

$$\mathbf{X}\boldsymbol{\beta} = \tilde{\mathbf{y}} - \mathbf{y}_o + \mathbf{e} = \mathbf{y} + \mathbf{e}$$
(15)

sowie für die Restriktionen

$$\mathbf{H}\boldsymbol{\beta} = \tilde{\mathbf{w}} - \mathbf{w}_o = \mathbf{w}.$$
 (16)

Die Matrizen des Schätzmodells folgen mit

$$\mathbf{X} = \begin{pmatrix} \mathbf{J}_{rg,1} \\ \dots \\ \mathbf{J}_{rg,n} \end{pmatrix}$$
(17)

als Koeffizientenmatrix,

/

$$\mathbf{y} = \begin{pmatrix} \mathbf{p}_{g,1} \\ \dots \\ \mathbf{p}_{g,n} \end{pmatrix}$$
(18)

als Beobachtungsvektor im linearisierten Schätzmodell und für die Gewichtsmatrix

$$\mathbf{P} = \operatorname{diag}\left(\mathbf{K}\left(\mathbf{r}_{1}\right), \dots, \mathbf{K}\left(\mathbf{r}_{n}\right)\right)^{-1}$$
(19)

mit der Jacobimatrix aus Gl. (8).

Für Schätzung von Beobachtungen in den Zenit ergibt sich ein nicht voller Rang der Normalgleichungsmatrix, weil die Horizontalrichtungsmessung nicht bestimmbar ist. Die Schätzung im Modell mit nicht vollem Rang und Restriktionen folgt als (siehe Koch 1986, Koch 2000)

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{T}\mathbf{P}\mathbf{X}\right)^{+} \left(\mathbf{X}\mathbf{P}\mathbf{y} + \mathbf{H}^{T}\left(\mathbf{H}\left(\mathbf{X}^{T}\mathbf{P}\mathbf{X}\right)^{+}\mathbf{H}^{T}\right)^{-1}\left(\mathbf{w} - \mathbf{H}\left(\mathbf{X}^{T}\mathbf{P}\mathbf{X}\right)^{+}\mathbf{X}\mathbf{P}\mathbf{y}\right)\right).$$
(20)

()⁺ ist die Moore-Penrose-Inverse, die durch eine Singulärwertzerlegung berechnet wird. Förstner und Wrobel (2016) zeigen einen Weg zur Vermeidung der aufwändigen Matrizenoperationen. Die Varianz- und Kovarianzmatrix folgt mit

$$\hat{\sigma}_{o}^{2} = \frac{1}{n-q-r} \left(\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{y} \right)^{T} \mathbf{P} \left(\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{y} \right),$$
(21)

wenn q der Rang der Normalgleichungsmatrix ist. Der Vektor $\hat{\beta} = \hat{\beta} + \beta_o$ enthält den mittleren Richtungsvektor, der mit Gl. (7) und Gl. (2) zurück in geodätische Richtungsmessungen gerechnet wird. Für diese mittleren Richtungen folgt die Varianz- und Kovarianzmatrix aus Gl. (9).

4 Experimente

4.1 Definition der Experimente

Die Experimente erfolgen mit simulierten geodätischen Messungen in acht ausgewählten Messrichtungen (siehe Abb. 1). Die ausgewählten Richtungen entsprechen den folgenden geodätischen Sollmessungen (h = Horizontalrichtung, v = Vertikalrichtung, jeweils in Gon):

	P1	P2	Р3	P4	Р5	P6	P7	P8
h	50,0000	150,0000	250,0000	350,0000	0,0000	0,0000	100,0000	100,0000
ν	50,0000	50,0000	50,0000	50,0000	0,0000	100,0000	0,0000	100,0000

Die Punkte P1 bis P4 sind die Winkelhalbierenden der positiven Quadrate. Sie dienen als Beispiele für Richtungsmessungen in beliebige, nicht spezielle Richtungen. Die Punkte P5 bis P8 sind spezielle Konstellationen: die Richtungen von P5 und P7 zeigen in den Zenit, P6 in Richtung der Ordinate (Nullrichtung der Richtungsmessung) und P8 in Richtung der Abszisse (in der Horizontalebene des Messstandpunkts).

Für die Richtungsschätzung aus Richtungsvektoren werden Messungen im mathematischen Polarkoordinatensystem benötigt. Die entsprechenden idealen Messungen im mathematischen Koordinatensystem (Azimut a, Elevation e) sind hier informatorisch angegeben:

	P1	P2	Р3	P4	Р5	P6	P7	P8
а	0,7854	-0,7854	-2,3562	-3,9270	1,5708	1,5708	0,0000	0,0000
е	0,7854	0,7854	0,7854	0,7854	1,5708	0,0000	1,5708	0,0000

Abb. 1: Die Abbildung zeigt die simulierten Richtungen im Tachymetersystem, das hier parallel ausgerichtet zum Landessystem ohne Beschränkung der Allgemeinheit gewählt ist (links: Schrägansicht, rechts: Draufsicht).

4.2 Durchführung der Experimente

Für jeden der ausgewählten Punkte P1 bis P8 werden fünf geodätische Richtungsbeobachtungen in zwei Lagen für die Horizontal- und die Vertikalrichtung, also zehn Richtungen in Paaren generiert. Obwohl die zehn Richtungsbeobachtungen i. d. R. in der geodätischen Praxis abwechselnd in der Lage I und Lage II durchgeführt und dokumentiert werden, sind diese hier der Übersichtlichkeit wegen nach Lage I und Lage II sortiert. Zu den Sollbeobachtungen wird dazu durch ein normalverteiltes Rauschen mit der Standardabweichung $\sigma = 0.001$ gon addiert, was der Genauigkeit eines Ingenieurtachymeters entspricht. Die resultierenden Messungen werden in den Wertebereich [0 gon ... 400 gon[reduziert, da Ablesungen am Tachymeter nur in dem Wertebereich möglich wären. Alle simulierten Beobachtungen sind in Tab. 1 aufgeführt. Für alle acht Punkte werden die Mittelungen mit beiden Verfahren durchgeführt. Die Umsetzung erfolgte in Matlab[®]. Die Ergebnisse sind im nächsten Abschnitt zusammengestellt.

Tab. 1: Übersicht über die simulierten Richtungsmessungen in den ausgewählten acht Richtungen

Pu	Punkt 1 (beliebige Richtung im 1. Quadraten):											
	M1-1	M1-2	M1-3	M1-4	M1-5	M1-6	M1-7	M1-8	M1-9	M1-10		
h	49,9994	49,9992	49,9992	49,9994	49,9998	249,9991	249,9985	249,9998	249,9980	250,0012		
v	50,0012	49,9989	49,9994	50,0002	50,0006	350,0008	350,0009	350,0002	349,9987	350,0020		
Pu	Punkt 2 (beliebige Richtung im 2. Quadraten):											
	M2-1	M2-2	M2-3	M2-4	M2-5	M2-6	M2-7	M2-8	M2-9	M2-10		
h	149,9997	150,0018	149,9981	149,9996	149,9986	350,0013	350,0005	350,0008	349,9995	350,0006		
v	50,0006	50,0018	49,9989	50,0014	49,9997	350,0001	349,9997	350,0009	350,0018	349,9994		
Pu	Punkt 3 (beliebige Richtung im 3. Quadraten):											
	M3-1	M3-2	M3-3	M3-4	M3-5	M3-6	M3-7	M3-8	M3-9	M3-10		
h	250,0006	249,9998	249,9990	249,9988	250,0009	49,9994	49,9985	49,9980	50,0004	49,9995		
v	49,9995	50,0006	49,9997	49,9993	49,9985	350,0000	350,0003	350,0002	349,9987	350,0006		
Pu	nkt 4 (beliebi	ge Richtung	im 4. Quadra	aten):								
	M4-1	M4-2	M4-3	M4-4	M4-5	M4-6	M4-7	M4-8	M4-9	M4-10		
h	349,9997	350,0000	350,0001	350,0004	349,9990	150,0008	149,9988	149,9995	150,0004	150,0004		
v	49,9981	50,0003	50,0004	50,0013	49,9982	349,9997	350,0011	350,0009	350,0015	350,0006		
Pu	nkt 5 (Richtu	ng zum Zeni	t):									
	M5-1	M5-2	M5-3	M5-4	M5-5	M5-6	M5-7	M5-8	M5-9	M5-10		
h	399,9994	0,0016	0,0002	0,0006	0,0004	199,9989	200,0002	200,0002	200,0000	199,9996		
h v	399,9994 399,9994	0,0016 399,9997	0,0002 399,9984	0,0006 399,9999	0,0004 399,9998	199,9989 0,0017	200,0002 399,9979	200,0002 399,9994	200,0000 0,0015	199,9996 0,0017		
h v Pui	399,9994 399,9994 nkt 6 (in Rich	0,0016 399,9997 ntung der Or	0,0002 399,9984 dinate):	0,0006 399,9999	0,0004 399,9998	199,9989 0,0017	200,0002 399,9979	200,0002 399,9994	200,0000 0,0015	199,9996 0,0017		
h v Pui	399,9994 399,9994 nkt 6 (in Rich M6-1	0,0016 399,9997 ntung der Or M6-2	0,0002 399,9984 dinate): M6-3	0,0006 399,9999 M6-4	0,0004 399,9998 M6-5	199,9989 0,0017 M6-6	200,0002 399,9979 M6-7	200,0002 399,9994 M6-8	200,0000 0,0015 M6-9	199,9996 0,0017 M6-10		
h v Pui	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004	0,0016 399,9997 ntung der Or M6-2 0,0019	0,0002 399,9984 dinate): M6-3 0,0007	0,0006 399,9999 M6-4 0,0009	0,0004 399,9998 M6-5 399,9991	199,9989 0,0017 M6-6 200,0005	200,0002 399,9979 M6-7 200,0007	200,0002 399,9994 M6-8 199,9987	200,0000 0,0015 M6-9 199,9985	199,9996 0,0017 M6-10 200,0008		
h v Pur h v	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989	0,0016 399,9997 htung der Or M6-2 0,0019 100,0006	0,0002 399,9984 dinate): M6-3 0,0007 99,9985	0,0006 399,9999 M6-4 0,0009 100,0006	0,0004 399,9998 M6-5 399,9991 100,0008	199,9989 0,0017 M6-6 200,0005 300,0005	200,0002 399,9979 M6-7 200,0007 299,9993	200,0002 399,9994 M6-8 199,9987 299,9993	200,0000 0,0015 M6-9 199,9985 299,9996	199,9996 0,0017 M6-10 200,0008 300,0001		
h v Puu h v	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989 hkt 7 (Richtu	0,0016 399,9997 htung der Or M6-2 0,0019 100,0006 ng zum Zeni	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t):	0,0006 399,9999 M6-4 0,0009 100,0006	0,0004 399,9998 M6-5 399,9991 100,0008	199,9989 0,0017 M6-6 200,0005 300,0005	200,0002 399,9979 M6-7 200,0007 299,9993	200,0002 399,9994 M6-8 199,9987 299,9993	200,0000 0,0015 M6-9 199,9985 299,9996	199,9996 0,0017 M6-10 200,0008 300,0001		
h v Pun h v	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989 hkt 7 (Richtu M7-1	0,0016 399,9997 ntung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3	0,0006 399,9999 M6-4 0,0009 100,0006 M7-4	0,0004 399,9998 M6-5 399,9991 100,0008 M7-5	199,9989 0,0017 M6-6 200,0005 300,0005 M7-6	200,0002 399,9979 M6-7 200,0007 299,9993 M7-7	200,0002 399,9994 M6-8 199,9987 299,9993 M7-8	200,0000 0,0015 M6-9 199,9985 299,9996	199,9996 0,0017 M6-10 200,0008 300,0001 M7-10		
h v Pun h v Pun h	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989 hkt 7 (Richtu M7-1 100,0003	0,0016 399,9997 ntung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2 99,9992	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3 100,0003	0,0006 399,9999 M6-4 0,0009 100,0006 M7-4 100,0002	0,0004 399,9998 M6-5 399,9991 100,0008 M7-5 100,0007	199,9989 0,0017 M6-6 200,0005 300,0005 M7-6 300,0011	200,0002 399,9979 M6-7 200,0007 299,9993 M7-7 300,0015	200,0002 399,9994 M6-8 199,9987 299,9993 M7-8 300,0002	200,0000 0,0015 M6-9 199,9985 299,9996 M7-9 299,9992	199,9996 0,0017 M6-10 200,0008 300,0001 M7-10 299,9976		
h v Pun h v Pun h v	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989 hkt 7 (Richtu M7-1 100,0003 0,0008	0,0016 399,9997 ntung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2 99,9992 399,9997	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3 100,0003 0,0013	0,0006 399,9999 M6-4 0,0009 100,0006 M7-4 100,0022 399,9979	0,0004 399,9998 M6-5 399,9991 100,0008 M7-5 100,0007 399,9990	199,9989 0,0017 M6-6 200,0005 300,0005 M7-6 300,0011 399,9997	200,0002 399,9979 M6-7 200,0007 299,9993 M7-7 300,0015 0,0007	200,0002 399,9994 M6-8 199,9987 299,9993 M7-8 300,0002 399,9991	200,0000 0,0015 M6-9 199,9985 299,9996 M7-9 299,9992 399,9980	199,9996 0,0017 M6-10 200,0008 300,0001 M7-10 299,9976 399,9983		
h v Pun h v Pun h v	399,9994 399,9994 hkt 6 (in Rich M6-1 0,0004 99,9989 hkt 7 (Richtu M7-1 100,0003 0,0008	0,0016 399,9997 ntung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2 99,9992 399,9997	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3 100,0003 0,0013 szisse):	0,0006 399,9999 M6-4 0,0009 100,0006 M7-4 100,0002 399,9979	0,0004 399,9998 M6-5 399,9991 100,0008 M7-5 100,0007 399,9990	199,9989 0,0017 M6-6 200,0005 300,0005 M7-6 300,0011 399,9997	200,0002 399,9979 M6-7 200,0007 299,9993 M7-7 300,0015 0,0007	200,0002 399,9994 M6-8 199,9987 299,9993 M7-8 300,0002 399,9991	200,0000 0,0015 M6-9 199,9985 299,9996 M7-9 299,9992 399,9980	199,9996 0,0017 M6-10 200,0008 300,0001 M7-10 299,9976 399,9983		
h v Pun h v Pun h v	399,9994 399,9994 akt 6 (in Rich M6-1 0,0004 99,9989 akt 7 (Richtu M7-1 100,0003 0,0008 akt 8 (in Rich M8-1	0,0016 399,9997 ntung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2 99,9992 399,9997 ntung der Ab M8-2	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3 100,0003 0,0013 szisse): M8-3	0,0006 399,9999 M6-4 0,0009 100,0006 100,0002 399,9979	0,0004 399,9998 M6-5 399,9991 100,0008 M7-5 100,0007 399,9990	199,9989 0,0017 M6-6 200,0005 300,0005 M7-6 300,0011 399,9997	200,0002 399,9979 00,0007 299,9993 00,0007 300,0015 0,0007	200,0002 399,9994 199,9987 299,9993 300,0002 399,9991 399,9991	200,0000 0,0015 / M6-9 199,9985 299,9996 / 299,9992 399,9980	199,9996 0,0017 M6-10 200,0008 300,0001 300,0001 299,9976 399,9983		
h v Pun h v Pun h v Pun h	399,9994 399,9994 akt 6 (in Rich M6-1 0,0004 99,9989 akt 7 (Richtu M7-1 100,0003 0,0008 akt 8 (in Rich M8-1 99,9990	0,0016 399,9997 atung der Or M6-2 0,0019 100,0006 ng zum Zeni M7-2 99,9992 399,9997 atung der Ab M8-2 100,0002	0,0002 399,9984 dinate): M6-3 0,0007 99,9985 t): M7-3 100,0003 0,0013 szisse): M8-3 99,999	0,0006 399,9999 M6-4 0,0009 100,0006 M7-4 100,0002 399,9979 M8-4 100,0002	0,0004 399,9998 (M6-5 399,9991 100,0008 (M7-5 100,0007 (399,9990 (M8-5 99,9996)	199,9989 0,0017 200,0005 300,0005 300,0001 309,9997 399,9997 M8-6 299,9983	200,0002 399,9979 200,0007 299,9993 00,0007 300,0015 0,0007 0,0007	200,0002 399,9994 199,9987 299,9993 300,0002 309,9991 399,9991 M8-8 299,9994	200,0000 0,0015 109,9985 299,9996 100 100 100 100 100 100 100 10	199,9996 0,0017 400000 200,0000 300,0001 00000 00000 00000 000000 000000 000000		

5 Ergebnisse und Diskussion

5.1 Ergebnisse der Optimierungen

Die einfache Mittelung der Richtungsmessungen als Ablesungen einer Horizontal- bzw. Vertikelrichtungsmessung liefert folgende Ergebnisse (in gon):

	P1	P2	Р3	P4	P5	P6	P7	P8
h	49,9994	150,0000	249,9995	349,9999	160,0001	120,0002	180,0000	99,9996
ν	49,9998	50,0001	49,9998	49,9995	0,0010	100,0001	0,0011	99,9999

mit den Standardabweichungen (in gon)

	P1	P2	Р3	P4	P5	P6	P7	P8
σh	0,0008	0,0011	0,0010	0,0007	84,3274	193,2174	103,2799	0,0008
σν	0,0011	0,0011	0,0007	0,0011	0,0007	0,0008	0,0006	0,0011

Durch die Schätzung über die Richtungsvektoren erhält man

	P1	P2	Р3	P4	Р5	P6	P7	P8
h	49,9994	150,0000	249,9995	349,9999	199,9995	0,0002	99,9978	99,9996
ν	49,9998	50,0001	49,9998	49,9995	0,0005	100,0001	0,0003	99,9999

mit den folgenden Standardabweichungen

	P1	P2	Р3	P4	Р5	P6	P7	P8
σh	0,0010	0,0007	0,0007	0,0005	16,4715	0,0004	15,1089	0,0003
σν	0,0007	0,0005	0,0005	0,0003	0,0004	0,0004	0,0004	0,0003

Die Ergebnisse der Berechnungen können in Bezug auf die geschätzte mittlere Richtung sowie deren geschätzte Genauigkeit beurteilt werden.

5.2 Beurteilung der geschätzten mittleren Richtung

Die einfache Mittelbildung liefert korrekte Ergebnisse für P1 bis P4 sowie für P8. Für die Messsituationen in Richtung des Zenits (P5, P7) sowie in Richtung der Ordinate (P6) versagt die direkte Mittelbildung der Horizontalrichtungsmessungen aufgrund der Zyklizität der Horizontalrichtungsangaben im rechtsseitig offenen Intervall von 0 gon bis 400 gon. Historisch konnte mit dem Theodoliten bzw. Tachymeter aufgrund der unmöglichen Anzielung durch das dann nicht zugängliche Fernrohr nicht im Zenit gemessen werden. Durch eine geeignete Wahl der Nullrichtung für die Horizontalrichtungsmessung könnte die Situation des Falls P6 vermieden werden.

Die Mittelung der Richtungen über die Richtungsvektoren liefert für alle Situationen (P1 bis P8) korrekte Ergebnisse. Auffällig sind die geschätzten mittleren Horizontalrichtungen für die Punkte im Zenit (P5 und P6). Bei einer Messung in den Zenit ist die Horizontalrichtung unbestimmt, also auch unbestimmbar. Es ergibt sich ein Rangdefekt der Ausgleichung, der durch die Pseudoinverse behandelt wird. Jede beliebige geschätzte Horizontalrichtung ist richtig.

5.3 Beurteilung der geschätzten Genauigkeiten

Bei der einfachen Mittelung liegen die Genauigkeiten für korrekte Ergebnisse im Bereich der Erwartungen und entsprechen den simulierten Messgenauigkeiten. In den Fällen mit einem falschen Mittelwert sind die Standardabweichungen überhöht und können bei bekannter Messgenauigkeit so als Indizien für falsche Schätzungen in speziellen Messsituation herangezogen werden. Aufgrund des Berechnungsschemas sind die Schätzungen für die Horizontalrichtung und die Vertikalrichtung unkorreliert.

Für die Schätzung über die Richtungsvektoren ergeben sich in allen Fällen plausible Ergebnisse. Auffällig sind die Standardabweichungen der geschätzten Horizontalrichtungen für die im Zenit gemessenen Punkte P5 und P7. Die hohen Werte zeigen aufgrund der Unbestimmbarkeit die hohe Varianz der Messungen. Empirisch hat sich gezeigt, dass aus der Umformung des gemittelten Vektors in die geodätischen Messungen wieder unkorrelierte Schätzwerte für die Richtungsmessungen resultieren.

Die Abweichungen in der geschätzten Genauigkeit kommen durch die unterschiedliche statistische Modellbildung der beiden Verfahren zustande. Für die einfache Mittelung werden unabhängig zwei Standardabweichungen, eine für die Horizontalrichtungsmessungen und eine für die Vertikalrichtungsmessungen, berechnet. Im Schätzverfahren unter Ausnutzung der Richtungsvektoren wird für die Richtungsvektoren eine einzelne Varianz der Gewichtseinheit ($\hat{\sigma}_o^2$) geschätzt. Die unterschiedlichen Werte ergeben sich hier erst durch die Varianz-/Kovarianzfortpflanzung bei der Rückrechnung in den Beobachtungsraum.

6 Fazit und Ausblick

In diesem Beitrag werden zwei Verfahren zur Berechnung von mittleren Richtungen verglichen: a) die direkte Mittelung der Richtungsbeobachtungen und b) die Mittelung durch Richtungsvektoren. Der neue Ansatz über Richtungsvektoren bietet klare Vorteile gegenüber dem traditionellen Ansatz, da auch Messungen in den Zenit und in Richtung der Ordinatenachse korrekt verarbeitet werden können, die mit modernen automatisierten Tachymetern im Gegensatz zu früheren Tachymetern mit optischer Fernrohranzielung gemessen werden können, und so zwangsfrei Messanordnungen gewählt werden können. Nachteilig ist die komplexe Berechnung, die aber aufgrund der Digitalisierung der Auswertung und der Rechenleistung der Computer und Tachymeter selbst ohne weiteres möglich ist. Grundsätzlich ist ein Umdenken in der terrestrischen Vermessung für Tachymetermessungen erforderlich. Auch andere tradierte Rechenschemata müssen aufgrund der neuen Möglichkeiten der Tachymeter überdacht werden. Eine notwendige Erneuerung des geodätischen Rechnens zeichnet sich ab.

Literatur

- Förstner, W., Wrobel, B. (2016): Photogrammetric Computer Vision. Springer.
- Gielsdorf, F., Rietdorf, A., Gruendig, L. (2004): A Concept for the calibration of terrestrial laser scanners. In: Proceedings of the FIG Working Week. Athens, Greece.
- Koch, K.-R. (1986): Parameterschätzung und Hypothesentests. Dümmler-Verlag, Bonn.
- Koch, K.-R. (2000): Einführung in die Bayes-Statistik. Springer-Verlag, Berlin.
- Meyer, T., Brunn, A., Stilla, U. (2021): Accuracy investigation on imagebased change detection for BIM compliant indoor models. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-4-2021, 105–112.
- Rietdorf, A. (2005): Automatisierte Auswertung und Kalibrierung von scannenden Messsystemen mit tachymetrischem Messprinzip. Verlag der Bayerischen Akademie der Wissenschaften, Deutsche Geodätische Kommission, Heft 582, München.
- Witte, B. (2011): Vermessungskunde und Grundlagen der Statistik für das Bauwesen. Wichmann.

Kontakt

Prof. Dr.-Ing. Ansgar Brunn Technische Hochschule Würzburg-Schweinfurt Fakultät für Kunststofftechnik und Vermessung Röntgenring 8, 97070 Würzburg geo.thws.de ansgar.brunn@thws.de

Dieser Beitrag ist auch digital verfügbar unter www.geodaesie.info.