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Abstract
Numerous regularization methods exist for solving the ill-
posed problem of downward continuation of satellite grav-
ity gradiometry (SGG) data to gravity anomaly at sea level. 
Generally, the use of a dense set of data is recommended in 
the downward continuation. However, when such dense data 
are used some of the regularization methods are not efficient 
and applicable. In this paper, a sequential way of using the 
Tikhonov regularization is developed for solving large systems 
and compared to methods of direct truncated singular val-
ue decomposition and iterative methods of range restricted 
minimum residual, algebraic reconstruction technique, ν and 
conjugate gradient for recovering gravity anomaly at sea level 
from the SGG data. Numerical studies show that the sequen-
tial Tikhonov regularization is comparable to the conjugate 
gradient and yields similar result.

Zusammenfassung
Zur Stabilisierung des unterbestimmten Problems der har-
monischen Fortsetzung von Satellitengradiometriedaten zu 
Schwereanomalien auf Geoidhöhe gibt es unterschiedliche 
Regularisierungsmethoden. Im Allgemeinen wird die Verwen-
dung eines räumlich dichten Datensatzes für die harmonische 
Fortsetzung nach unten empfohlen. Aber für diesen Fall sind 
einige der Regularisierungsverfahren numerisch ineffizient 
und daher nicht gut anwendbar. In diesem Beitrag wird ein 
sequenzielles Verfahren der Tikhonov-Regularisierung für die 
Fortsetzung großer Datensätze vorgestellt und mit direkten 
Regularisierungsmethoden, wie der abgeschnittenen/abge-
brochenen Singulärwertzerlegung, sowie iterativen Methoden, 
wie der entfernungsbeschränkten Minimierung der Residuen, 
der algebraischen Rekonstruktionsmethode, der ν Methode 
und der Methode der konjugierten Gradienten, verglichen. 
Numerische Untersuchungen zeigen, dass die sequenzielle 
Tikhonov-Regularisierung mit der Methode der konjugierten 
Gradienten vergleichbar ist und zu gleichwertigen Ergebnis-
sen führt.

Keywords: bias-correction, integral inversion, iterative 
regularization, Krylov subspaces, Tikhonov regularization

1	 Introduction

The gravity field and steady-state ocean circulation ex-
plorer (GOCE) (ESA 1999, 2008) is the recent European 
Space Agency satellite mission which uses the satellite 
gravity gradiometry (SGG) technique. The main product 

of this mission will be a set of spherical harmonic coeffi-
cients of the Earth’s gravity field and their corresponding 
errors to degree and order 200 corresponding to a spatial 
resolution of 0.9° × 0.9° (100 km × 100 km). This set is 
expected to deliver the geoid and gravity anomalies with 
accuracies of 1–2 cm and 1 mGal, respectively from joint 
inversion of SGG and satellite-to-satellite tracking data. 
GOCE measures the full tensor of gravitation, contain-
ing second-order partial derivatives of the geopotential, 
in the gradiometer reference frame, second by second, 
during its life. However, it should be stated that the full 
tensor of gravitation is not measured with the same ac-
curacy and there are highly sensitive and less sensitive 
gradiometer axes. GOCE will provide a very dense set of 
the SGG data all over the globe, except polar gaps. The 
SGG data of GOCE can be used directly to recover gravity 
anomalies at sea level.

The problem of determining the gravity anomalies at 
sea level from SGG data was the issue investigated by 
Reed (1973). He used the second-order partial derivatives 
of the extended Stokes formula to present the integral 
relation between gravity anomaly and the SGG data and 
inverted them to recover the gravity anomaly. Since in-
version of such integral formulas is an ill-posed problem 
he used some a priori constraints for regularization of 
the integral equations. Later on, this idea was followed 
by Xu (1992) who presented a technique to invert the 
integral formulas without a priori information and it was 
further investigated in Xu (1998) by comparing it with 
some direct regularization methods. Koch and Kusche 
(2002) developed an iterative method for simultaneous 
estimation of variance components and regularization 
parameter. Kotsakis (2007) used the integral inversion for 
recovering the gravity anomaly at sea level by a cova-
riance-adaptive method. Eshagh (2009) used the integral 
inversion method for the recovery of the anomalies from 
full gravitational tensor. Xu (2009) presented a method 
based on generalized cross validation for simultaneous 
estimation of variance components and regularization of 
system of equations. Janak et al. (2009) carried out the 
inversion of full gravitational tensor to gravity anomalies 
using the truncated singular value decomposition. Inver-
sion of stochastically modified integral of second-order 
radial derivative of the extended Stokes formula was 
done by Eshagh (2011a). Regional gravity field recovery 
from SGG data using least-squares collocation was done 
by Tscherning (1988, 1989) and Arabelos and Tscherning 
(1990, 1993, 1995 and 1999). Tscherning et al. (1990) 
studied three different methods of regional gravity field 
recovery: least-squares collocation, Fourier Transform 

Sequential Tikhonov Regularization: An Alternative Way  
for Integral Inversion of Satellite Gradiometric Data

Mehdi Eshagh



Fachbeitrag Eshagh, Sequential Tikhonov Regularization: An Alternative Way for Integral Inversion …

114 zfv   2/2011   136. Jg.

and the integral approach which was further developed 
by Eshagh (2011b).

In each one of the reviewed studies one regularization 
method was considered for inversion of integral formu-
las. However, it is obvious that there are more regular-
ization methods with their own benefits. In this study, 
the goal is to investigate some of these regularization 
methods, in the same conditions, to see which one of 
them is suitable for recovering gravity anomalies from 
the SGG data. These regularization methods are classi-
fied into two main groups of direct and iterative. Here, 
direct methods of Tikhonov regularization (TR) (Tikhonov 
1963) and the truncated singular value decomposition 
(TSVD) (Hansen 1998) are considered as well as iterative 
methods of ν (Brakhage 1987), algebraic reconstruction 
technique (ART) (Kaczmarz 1937), the range restricted 
generalized minimum residual (RRGMRES) (Calvetti et al. 
2000) and conjugate gradient (CG) (Hanke 1995). Also a 
new strategy to use the TR in a sequential way is simply 
developed and named sequential TR (STR), which is ap-
plied for recovering the gravity anomalies at sea level 
from the SGG data.

2	 Second-order radial derivative of  
Stokes’ formula

The second-order radial derivative of geopotential is the 
simplest and the most important element of the gravita-
tional tensor. It is simple because its mathematical for-
mulation is easier than the other gradients, and it is im-
portant as it has the most power with respect to the other 
gradients. Let the following estimator for this gradient at 
satellite level be (Reed 1973):

( ) ( ) ( )
0

,
4rr rr

R
T P S r g Q d

σ

ψ σ
π

= ∆∫∫  ,	 (1a)

where ( ) 2 2
rrT P T r= ∂ ∂  , T stands for disturbing potential, 

R is the mean radius of the Earth, Dg (Q) is the gravity 
anomaly at the integration point Q, y is the geocentric 
angle between the computation and integration points P 
and Q, s0 cap size of integration as we are integrating over 
a spherical cap (which is an assumption with respect to the 
realistic full scale inversion problem) and refer to it later 
in the numerical example, and ( ) ( )2 2, ,rrS r S r rψ ψ= ∂ ∂  
(where ( ),S r ψ  is the extended Stokes’ function) is the 
kernel of integral (Reed 1973, Eq. (5.35)):
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	 (1b)

where t R r= , 21 2 cosD t tψ= − +  and r is the geo
centric distance of P.

Eq. (1a) is the Fredholm integral equation of the first 
kind, and inversion of such an integral is an ill-posed 
problem. The integral in the right hand side of this equa-
tion should be discretized and solved. Let us present the 
discretized integral (1a) in the following matrix form:

= −Ax L ε , { } 2
0E T σ= Qεε   and  { }E 0=ε  ,	 (2)

where A is the n × m coefficient matrix (right hand side 
of Eq. (1a)), L is the n × 1 vector of rrT  (left hand side of 
Eq. (1a)), e is the n × 1 vector of error of L, x is the m × 1 
vector of unknown parameters or the gravity anomalies 
at sea level, E stands for statistical expectation operator,  

2
0σ  is the a priori variance factor which is equal to 1 and  

Q is the variance-covariance matrix of observations 
which is considered an identity matrix in this study. 
Since the matrix A is derived after discretization of the 
integral formula (1a), e. g. based on the simple quadra-
ture method, then it will be ill-conditioned. This means 
that the condition number of A will be large so that by 
inverting the system of equations (2), the errors of ob-
servables are amplified and destroy the solution. This 
unwanted property can be controlled by regularization 
which means to neglect the high frequencies of the solu-
tion. Numerous methods have been presented for solving 
such an ill-posed problem. These methods are so-called 
regularization. The next section will present an overview 
for some of them.

3	 A conceptual overview of regularization 
methods

The regularization methods are divided into two catego-
ries of direct and iterative. Iterative methods are impor-
tant as they avoid the direct inversion of the system of 
equations. This is the reason that the iterative methods 
are recommended for large systems. In spite of the it-
erative methods, the direct methods solve the system by 
direct inversion of its coefficients matrix, which is a com-
plicated problem when it is large and ill-conditioned. In 
the following sections, some of the direct and iterative 
methods are reviewed.

3.1	 Direct methods

This subsection presents two well-known methods of 
TSVD and TR for solving ill-conditioned system of equa-
tions. Both of these methods have a shortcoming of 
working with large matrices. In the following, these two 
methods are briefly introduced.
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3.1.1	 Truncated singular value decomposition

The main idea of the truncated singular value decomposi-
tion (TSVD) comes from the fact that the small eigenval-
ues of the coefficients matrix of system are removed and 
those parts of solution relating to these small eigenvalues 
are neglected in the final solution. In fact, the high fre-
quencies of the solutions are removed and a smoothed 
solution is sought. In order to explain the concept of the 
TSVD, the singular value decomposition of the matrix A 
is considered:

T=A U VΛ ,	 (3a)

where U is an n × n orthogonal matrix with UUT = In, and 
V is an m × m orthogonal matrix with VVT = Im, I stands 
for the identity matrix with dimensions of n or m and L 
is an n × m matrix containing eigenvalues (singular val-
ues) in a decreasing order. U and V contain eigenvectors 
of A and they play the role of the base functions for A. 
Substituting Eq. (3a) into Eq. (2) and solve the result for 
x yields:

1

Tn
T i

i
i i

u
v

λ
+

=

= = ∑ L
x V U LΛ  ,	 (3b)

where L+ is the pseudo inverse of L, li is the eigenvalues 
of A, T

iu  and ni are the vectors constructing the orthogo-
nal matrices U and V.

Eq. (3b) is the least-squares solution of the system of 
equations (2) in the spectral form. Since the singular value 
is located in the denominator of the solution, therefore, 
when it is small, this component of the solution will be 
amplified and since L is erroneous, its error is amplified 
as well. The idea of the TSVD is not to use all the spectra 
of the solution and truncate the series (3b) to k instead 
of n. In this case, a smooth solution is obtained. One can 
mention that the minimization problem of the TSVD is:

{ }1 2
2span , , ,

min
k∈

−
x v v v

L Ax


 ,	 (3c)

where 2
•  stands for the L2‑norm. Eq. (3c) means that x 

is obtained from a combination of the bases v1, v2, …, vk 
and k means that the solution is constructed by k bases. 
The main issue in the TSVD is the proper selection of the 
truncation number k. Different methods have been pre-
sented for estimating k such as generalized cross valida-
tion (Wahba 1976), L‑curve (Hansen 1998), quasi-optimal 
method (Hansen 2007), discrepancy principle (cf. Scherzer 
1993), the monotone error rule (Hämarik and Taytenhahn 
2001), normalized cumulative periodogram (cf. Diggle 
1991 or Mojabi and LoVetri 2008).

3.1.2	 Tikhonov regularization

Tikhonov (1963) was one of the earliest persons started 
solving ill-posed problems. His method is summarized in 
the following minimization problem:

( )2
2 2

min α− +Ax L x ,	 (4a)

where a is the regularization parameter. The solution of 
the above minimization problem is obtained by solving 
the following system of equations:

( )2T Tα+ =A A I x A L,	 (4b)

where I is the identity matrix. Tikhonov’s idea is to add 
a small positive number to the diagonal elements of the 
coefficients matrix of the normal system of equations for 
stabilizing it. The main important issue in this method 
is the proper choice of this small positive number or the 
regularization parameter. Therefore the regularized solu-
tion of Eq. (2) will be:

( ) 12
reg

T Tα
−

= +x A A I A L.	 (4c)

Due to adding the regularization parameter the solution 
will be biased. This bias is the penalty to pay for stabiliza-
tion purpose and it is presented by the following formula 
(Xu et al. 2006, Eshagh 2009):

( ) ( ) 12 2
regBias T −

= − +x A A I xα α .	 (4d)

The regularization parameter a can be estimated by 
L‑curve, generalized cross validation (Wahba 1976) or 
quasi-optimal method (Hansen 2007).

3.1.3	 Sequential Tikhonov regularization

The shortcoming of the TR is to invert a large coefficient 
matrix which is time consuming and sometimes impos-
sible. Different approaches proposed for using the TR for 
large systems such as Arnoldi‑TR (Lewis and Reichel 2008) 
and Lanczos bidiagonalization TR (Björck 1988, Calvetti 
et al. 2000, 2003, Golub and von Matt 1997, Kilmer and 
O’Leary 2001 and O’Leary and Simmons 1981). These 
versions of the TR take advantage of some matrix fac-
torizations like Lanczos bidiagonalization (Björck 1988) 
and Arnoldi decomposition (Saad 1996) to the system of 
equations and work with structure of the system. The idea 
of applying the TR on the normal equations is not relevant 
for two reasons: a) increase of the condition number by 
power 2 which makes the normal system more unstable 
than the system itself, b) loss of some physical properties 
of A and L due to being multiplied by AT (cf. Maitre and 
Levy 1983). However, the problem of solving the ill-posed 
problems using the TR is possible in another simple way 
if the number of unknown parameters is not very large. In 
this case, the TR method can be used sequentially so that 
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working with large number of observations is possible. 
This method is named sequential TR (STR) in this study. 
The idea of the STR method is very similar to the sequen-
tial least-squares adjustment (see e. g. Cooper 1987). In 
this case the system of equations is partitioned into small 
subsystems. One system is solved and the improvements 
of the solution due to the other systems and observations 
are computed and implied on the former solution sequen-
tially. The beauty of the STR is its capability to work 
with large systems without estimating the regularization 
parameter from normal equations. In order to explain the 
idea, let us assume that the system of equations is divided 
into two subsystems:

     
= −     

     

A L
x

A L
ε
ε

1 1 1

2 2 2

 ,	 (5a)

where A1 and A2 are the coefficient matrices of the first 
and the second subsystems. The vector of observation 
L is divided into L1 and L2 with corresponding errors e1 
and e2.

The TR solution of the first system will be:

( ) 11 2
reg 1 1 1 1

T Tα
−

= +x A A I A L  .	 (5b)

Now assume that the regularization parameter was al-
ready estimated from the first system. Therefore the solu-
tion of both systems together will be:

( ) ( )12 2
reg 1 1 2 2 1 1 2 2

T T T Tα
−

= + + +x A A A A I A L A L  .	 (5c)

This means that the same regularization parameter as 
that was used in the first systems (5b) is used to estimate 

2
regx  . In this case, the system of equations will not be ill-

conditioned but the regularization parameter has not the 
best value. It is straightforward to write Eq. (5c) in the 
following form:

( ) ( )12 1 2 1
reg reg 1 1 2 2 2 2 2 reg

T T T Tα
−

= + + + −x x A A A A I A L A x  .	(5d)

The solution 1
regx  contains a bias due to the TR, but ac-

cording to Eq. (4d) this bias can be estimated by consid-
ering 1

regx  as the approximate value of x. Xu et al. (2006) 
mentioned that, in this case, a second-order bias occurs 
but its power is smaller than the first-order one. Therefore 
removing the bias can improve the solution. Consequent-
ly, the following STR estimator is derived:

( ) ( ) ( )12 1 1 2 1
reg reg reg 1 1 2 2 2 2 2 regBias T T T Tα

−
= − + + + −x x x A A A A I A L A x 

     ( ) ( ) ( )12 1 1 2 1
reg reg reg 1 1 2 2 2 2 2 regBias T T T Tα

−
= − + + + −x x x A A A A I A L A x 	 (5e)

and

( ) ( ) 12 2 2
reg 1 1 2 2Bias T T −

= − + +x A A A A I xα α  .	 (5f)

This idea can be generalized to the case where the system 
is divided into k + 1 sub matrices:

( ) ( )
11

1 2
reg reg reg 1 1 1 reg

1

Bias
k

k k k T T T k
i i k k k

i

α
−+

+
+ + +

=

 = − + + − 
 
∑x x x A A I A L A x
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+ + +

=
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 
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(5g)

and

( )
11

1 2 2
reg

1

Bias
k

k T
i i

i

−+
+

=

 = − + 
 
∑x A A I xα α  . 	 (5h)

3.2	 Iterative methods

Here the iterative methods are divided into two groups: 
a) the classical iterative methods and b) the methods 
based on Krylov subspaces. In this study, the former class 
includes the n method and the algebraic reconstruction 
technique (ART) and the latter consists of the range re-
stricted generalized minimum residual (RRGMRES) and 
conjugate gradient (CG).

3.2.1	 Classical iterative methods

In this section, the n method (Brakhage 1987) and ART 
(Kaczmarz 1937) are presented. For more details about 
these methods the reader is referred to the reference list.

3.2.1.1	 The n method

This method is an extension of the Landweber method 
(Engl and Groetsch 1987). Generally, the Landweber it-
erative method is presented by:

( )1 1k k T kω− −= + −x x A Ax L  .	 (6a)

The classical Landweber method is to select ( )TFω = A A  
where F is a rational function of AT A. Depending on the 
choice of w, different cases for the Landweber methods 
are derived. For example if one selects ( ) 12Tω α

−
= +A A I  

the method will be the iterative Tikhonov regularization. 
The n method is a special case of the Landweber meth-
od which accelerates the method by replacing xk–1 by a 
weighted average of some last iterates and allowing w 
to depend on k. This method was presented by Brakhage 
(1987) which is a two-step procedure of the form (Hansen 
1998):

( ) ( )1 2 11k k k T k
k k k

− − −= + − + −x x x A Ax Lµ µ ω  ,	 (6b)

where

( )( )( )
( )( )( )

1 2 3 2 2 1
1

2 1 2 4 1 2 2 3k

k k k v

k v k v k v
µ

− − + −
= +

+ − + − + −
 ,	 (6c)
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( )( )
( )( )
4 2 2 1 1

2 1 2 4 1k

k v k

k v k v

ν
ω

+ − + −
=

+ − + −
	 (6d)

and 0 < n < 1.

3.2.1.2	 Algebraic reconstruction technique

The algebraic reconstruction technique (ART) is called a 
row-action method as each row of the matrix A is used at 
a time. This method is suitable when A has large dimen-
sions. In this method, in each iteration involves a step 
through the rows of A of the form (Hansen 1998):

1
1 2

2

T
i i k

k k i

i

−
−

−
= +

L a x
x x a

a
 ,	 (7)

where L1 is the i‑th components of L and ai is the i‑th 
row of A.

3.2.2	 Krylov subspaces-based methods

In the Krylov subspaces-based methods (Hansen 1998), 
the following minimization problem is solved:

2
min

kK∈
−

x
L Ax  .	 (8a)

Eq. (8a) means that the residual is minimized so that the 
solution is in the k‑dimensional subspaces Kk. This solu-
tion subspace can be represented by Krylov subspaces. 
A Krylov space of order k, generated by an n‑by‑n ma-
trix A and a vector L of dimension n is the linear sub-
space spanned by the images of L under the first k powers 
of A. The iterative solution of the system can be presented 
in the following form (Jensen and Hansen 2007):

( )k k ′= Φx B B L	 (8b)

where Fk(B) is a polynomial of degree k‑1 with the ma-
trix B. B and B´ are defined based on each method and 
its corresponding Krylov subspaces. xk stands for k‑th 
iterated solution. Eq. (8b) shows that the solution will be 
a combination of B and B´L, or in other words; in Krylov 
subspaces:

( ) { }1, span , , , k
kK −′ ′ ′ ′∈ =x B B L B L BB L B B L  .	 (8c)

3.2.2.1	 Range restricted generalized minimum residual 
method

The range restricted generalized minimum residual 
(RRGMRES) was proposed by Calvetti et al. (2000) for 
solving the system of equations with a squares coefficient 
matrix. They modified the generalized minimum residual 
(GMRES) method (Saad and Schultz 1986) by restricting 

the solution to range of the coefficient matrix of system 
of equations. If this iterative method is applied for solv-
ing a system, it will yield the least-squares solution of 
the system and when it is applied for a singular system 
it yields its minimum norm least-squares solution. Cal-
vetti et al. (2000) proved that RRGMRES has an intrinsic 
regularization property and the vector L is damped by 
the ill-conditioned matrix A. If these methods are applied 
for solving ill-conditioned systems the iterative solutions 
will converge to the minimum-norm least-squares solu-
tion. However, the first few iterated solutions can be con-
sidered as a regularized solution as we are not interested 
in the convergence of the solution to the minimum-norm 
least-squares one. In fact the long wavelength structure 
of the solution is constructed by the first iterations and by 
iterating the solution its higher frequencies are obtained. 
In singular value point of view, one can say that the first 
large singular value components of the solution contrib-
ute more strongly to the solution than the component 
corresponding to small singular values (Jensen and Han-
sen 2007). A study of Hansen and Jensen (2006) showed 
that these iterative regularization methods are superior to 
minimum residual and GMRES as they have a better noise 
suppression property.

Generally, the GMRES problems are solved using the 
Arnoldi decomposition (Saad 1996):

1k k k+=AV V H 	 (9a)

where ( )1 1 2 1 1k k n k+ + × +
=   V v v v  has orthogonal 

columns i. e. 1 1 1
T
k k k+ + +=V V I  which span the Krylov sub-

spaces Kk (A,L) and ( )( )1k k k+ ×
H  is of Hessenberg-type, 

which an almost triangular matrix. The upper and lower  
triangular Hessenberg matrices have zero elements below 
the first sub-diagonal and above the first super-diagonal 
elements, respectively. In order to see how to generate 
these matrices see e. g. Calvetti et al. (2000). By selecting 
the k=x V y and substituting it into Eq. (2) the following 
minimization problem can be achieved:

( ) 12 2, R
min min

k
k

k kK +∈ ∈
− = −

x A L y
L Ax L V H y  .	 (9b)

Eq. (9b) shows that the Arnoldi decomposition trans-
fers the solution space from Kk (A,L) into y ∈ Rk which 
is simpler to solve as the problem is converted to an 
ordinary minimization problem. Once y is estimated x 
will be obtained from x = Vky. The Krylov subspaces of 
both methods are Kk (A,L). Now if the subspace Kk (A,AL) 
is considered for this method, the RRGMRES is derived 
which have somehow a regularization property due to 
multiplication of A to L in the subspaces. As Calvetti 
et al. (2000) mentioned the matrix ( )1R k k

k
+ ×∈H  will not be 

ill-conditioned if the Arnoldi decomposition starts with 
AL vector instead of A. This is the regularization philoso-
phy behind the RRGMRES method. According to Jensen 
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and Hansen (2007), the effect of the polynomial Fk (B) in 
these methods is to ‘kill’ the large components of UT L, 
U is the eigenvector of A, by being small for these large 
components.

3.2.2.2	 Conjugate gradient

The conjugate gradient (CG) method was designed for 
solving the system of equations having symmetric and 
sparse coefficient matrix. It can be used for solving any 
type of systems, but if one desires to have a least-squares 
solution, it should be applied for the un-regularized nor-
mal equations:

T T=A Ax A L .	 (10a)

The minimization problem here will be the same as that 
presented in Eq. (8a) considering B = AT A and B´ = AT in 
Eq. (8c).

In CG the components related to the large singular val-
ues converge faster than those involved with small ones. 
This is the reason the CG has an intrinsic regularization 
property (Hansen 2007). In geometrical point of view, the 
minimization problem creates concentric ellipses around 
the solution and in each iteration a gradient to that ellipse 
passing from the iterative solution is generated towards 
the final solution (Bouman 1998) so that the gradient is 
orthogonal to all previous ones.

Two vectors are conjugate if they are orthogonal with 
respect to inner product. If pk is the sequence of orthogo-
nal directions, then the solution of the system can be 
expanded in terms of these directions which can play the 
role of base function for the solution:

1

k

i i
i

α
=

= ∑x p  ,	 (10b)

where i stands for iteration and ai is the coefficients of 
the expansions. n will be maximum number of iterations. 
Substituting Eq. (10b) into Eq. (10a) yields:

1

n
T T T

i i
i

α
=

= =∑A Ax A Ap A L .	 (10c)

Pre-multiplying Eq. (10c) by pk and further simplifica-
tions yield:

T T
k

k T T
k k

α =
p A L

p A Ap
 .	 (10d)

CG needs an initial value x0 which can be considered 
as zero without loss of generality. However, the solution 
is sought in such a way that the following function is 
minimized:

( ) 1
2

T T T TF = −x x A Ax x A L .	 (10e)

Since F (x) should be a minimizer, then its gradient should 
be p0 = Ax0 – L. By having this gradient one can obtain ai 
using Eq. (10d) and

1

T
i i

k k iT T
i k i i

+
≤

= −∑ p Ar
p r p

p A Ap
 ,	 (10f)

1 1 1k k k kα+ + += +x x p  .	 (10g)

Eq. (10b) presents the solution by a series which is con-
structed iteratively by adding its frequencies step-by-
step. The first iterations include the low frequencies and 
the high frequencies, infected to the observation noise, 
are added by iterating the solution. By truncating the se-
ries of Eq. (10b) to k, which means to stop iteration before 
convergence of the solution, the infected higher frequen-
cies are neglected and a smooth solution is achieved. This 
is the regularization property of the CG method.

4	 Numerical studies

In order to test quality of the aforementioned regular-
ization methods, a simulation test is done. The EGM08 
geopotential model (Pavlis et al. 2008) is used as true 
gravity model for generating rrT  and the gravity anoma-
lies at sea level. The problem is to recover the gravity 
anomalies from inversion of the second-order radial de-
rivative of disturbing potential rrT  in Fennoscandia. This 
region is limited between the latitudes 55 °N and 70 °N 
and the longitudes between 5 °E and 30 °E. A larger area 
by 5° than Fennoscandia is selected for inverting rrT  for 
reducing the effect of the spatial truncation error of the 
integral formula, namely, this area is limited between 
the latitudes 50 °N and 75 °N and the longitudes between  
0 °E and 35 °E. Figs. (1a) and (1b) show coverage of rrT  
and the area of recovering gravity anomalies, respec-
tively. A 3‑month orbit of GOCE is simulated, based on 
the non-singular formulas for the equations of satellite 
motion in the presence of a geopotential force, by Es-
hagh et al. (2009). It is integrated with a rate of 10 s at an 
approximate altitude of 250 km above the Earth surface. 
Those satellite’s passes over Fennoscandia are separated 
from the whole orbit over this area. The goal is to re-
cover the gravity anomaly with resolutions of 1.0° × 1.0° 
and 0.5° × 0.5° in Fennoscandia from the generated rrT  .  
In order to test the quality of the recovered anomalies 
they are compared to the corresponding anomalies com-
puted from EGM08. A coloured noise is generated for rrT  
by passing a white noise with a standard deviation of 
0.02 E through an auto-regressive moving average filter 
of degree 2 and order 1; i. e. ARMA (2,1) (Kless et al. 
2003).

The maximum, mean, minimum and standard devia-
tion of rrT  are 0.53, 0.04, –0.05 and 0.2 in Eötvös units, re-
spectively and the corresponding statistics for the gravity 
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anomalies are 69.0, 3.4, –55.1 and 17.4 in unit of mGal, 
respectively. It should be mentioned that the inversion is 
performed in the whole area but those gravity anomalies 
which are located in the Fennoscandia, smaller by 5°, are 
selected as the results. As Fig. 2b shows the topographic 
features of Fennoscandia are located in Norway. The de-
termined gravity anomalies in this area will be biased 
due to disregarding these topographic features. However, 
this bias can be estimated and removed from the gravity 
anomalies to reduce them at sea level. In this study, since 
the gravity anomalies computed from EGM08 contains 
the same topographic bias as that obtained by the direct 
analytical continuation of rrT  , it will vanish by computing 
the root mean square errors. Consequently the statistics 
which will be presented later are free of topographic bias.

The singular values of the 
coefficients matrix of the sys-
tem of equations, organized 
for recovering 1.0° × 1.0° and 
0.5° × 0.5° gravity anoma-
lies, are presented in Fig. 2. 
It is obvious that, by increas-
ing the resolution of the un-
known gravity anomalies, the 
system of equations becomes 
more unstable. This fact was 
clearly shown in Fig. 2, when 
the resolution of unknown in-
creases the system will have 

smaller singular values. The size of the coefficient matrix 
is 10934 × 936 when the resolution is 1.0° × 1.0° and it will 
be 10934 × 3621.

The main problem in regularization of a system of 
equations is to select a proper regularization parameter 
in TR, the truncation number in TSVD and iteration num-
ber for iterative methods. Here, L‑curve (Hansen 1998) is 
used to find the regularization parameter in TR, trunca-
tion degree of TSVD and number of iterations in itera-
tive methods. For more detail about L‑curve see Hansen 
(1998).

The MATLAB package Regularization Tools (Hansen 
2007) is used for inverting the system of equations and 
recovering the gravity anomaly at sea level from rrT  . It-
erative and direct methods are compared in the same con-
ditions to see which one is better than another.

Tab. 1 summarizes the statistics of error of the recov-
ered gravity anomalies with resolutions of 1.0° × 1.0° and 
0.5° × 0.5° at sea level and the executed time in second. 
Classical method of ART seems to work better than n, 
but it is the slowest iterative method according to this 
table. n = 0.75 was selected as the best value for n in the 
n method. Among the Krylov subspaces-based iterative 
methods CG is better but slightly slower than RRGMRES. 
TR could not compete with CG in this example and as 
the table shows the TR has not capability of recovering 
when the resolution of data is high. However, it should 
be mentioned that the TSVD was applied directly to the 

Fig. 1: a) rrT , Unit 1 E; b) gravity anomalies. Unit: 1 mGal
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Fig 2: Singular values of coefficient matrix when resolu-
tion of unknowns is 1.0° × 1.0° and 0.5° × 0.5°.

Tab. 1: Error of recovered gravity anomalies from SGG data, ART (Algebraic Reconstruction Technique),  
RRGMRES (Range Restricted Generalized Minimum Residual), CG (Conjugate Gradient), TSVD (Truncated  
Singular Value Decomposition), TR (Tikhonov Regularization), Unit: 1 mGal

1.0° × 1.0° 0.5° × 0.5°

Method Min Mean Max Std rms Time  
(sec.)

Min Mean Max Std rms Time  
(sec.)

n –35.9 –1.2 33.0 7.9 8.0   2 –39.8 –1.1 35.2 8.4 8.5     2

ART –21.5 –0.2 22.7 7.2 7.2 30 –22.2 –0.1 24.4 1.0 7.0   53

RRGMRES –18.7 –0.6 23.0 6.6 6.6   1 –22.2 –0.6 24.1 7.1 7.1     7

CG –25.3 –0.5 19.6 6.6 6.6   4 –25.4 –0.4 23.5 6.5 6.5   13

TSVD –23.4 –0.6 28.9 7.9 7.9 10 –30.1 –0.7 31.8 8.2 8.2 240

TR –18.2 –0.6 20.6 6.4 6.5 10 – – – – – –



Fachbeitrag Eshagh, Sequential Tikhonov Regularization: An Alternative Way for Integral Inversion …

120 zfv   2/2011   136. Jg.

normal equations, in such a case the size of the coeffi-
cient matrix will reduce to that of unknowns but as was 
already explained working with normal equation is not a 
suitable way of solving ill-posed problems.

In Tab. 2, the results of recovery of gravity anomalies 
using the STR is presented. In order to show the correct 
performance of the STR idea, recovering of 1.0° × 1.0° 
gravity anomalies is considered to see if the STR method 
can yield the same results as by the TR. In order to do 
that, the 3‑month orbit of GOCE is divided into three 
parts and the recovery is done month by month. In Tab. 2, 
the subsystems mean that the system of equation is di-
vided into three parts. 1 means that only the first part of 
the system is inverted and the error statistics of the recov-
ered gravity anomalies is presented in the same row as 1.  
1 + 2 means that the second part of system is sequen-
tially added to the result of the first part and similarly for 
1 + 2 + 3. No improvement is seen due to inclusion of the 
third part of system of equations. This is due to the fact 
that the improvements are very small and insignificant 
and the contribution of spatial truncation error is still 
large. However, comparing the result of STR to TR, pre-
sented in Tab. 1, shows a slight improvement in recovery.

So far, the correct performance of the STR was shown 
by comparing its results with direct TR. Tab. 2 showed 
that the TR method was not capable to invert the system 
of equations as the number of unknown was very large 
so that MATLAB could not handle it. In order to do the 
recovery using the STR method the 3‑month simulated 
orbit of GOCE is divided into two parts as the number of 
unknowns in this case is four times larger than that in 
recovering 1.0° × 1.0° anomalies. In this case, the recovery 
is done 1.5‑month by 1.5‑month and in two steps. The 
result of this way of recovery is also presented in Tab. 2. 
The recovery is done with an error of 6.6 mGal when the 
first set of observations is used. Inclusion of the second 
set of observations improves the result and reduces the 
error of recovered gravity anomalies to 6.2 mGal which is 
smaller than that of the CG method.

5	 Conclusions

The numerical studies confirm that the iterative methods 
are more suitable than the direct methods for inverting 

large systems. Among the iterative methods 
conjugate gradient is the best and recovery 
of the gravity anomalies at sea level can 
be done with an error of 6.5 mGal from the 
satellite gravity gradiometry data. The se-
quential Tikhonov regularization seems to 
be better than the truncated singular value 
decomposition and comparable to the itera-
tive conjugate gradient and could recov-
er the gravity anomalies with an error of 
6.2 mGal in this study.

The study showed that the STR method can compete 
with other regularization methods. However, it should be 
stated that the STR method is not a fast method compar-
ing to the iterative CG method. Another important is-
sue of the STR method is that the number of unknown 
parameters should not be very large. However, as was 
shown, the STR method can work very well with large 
number of observations. The differences between the STR 
and CG can be summarized as:
1.	�The STR is a dynamic method; when a new set of data 

is included to the observation vector, reconstruction 
of the system of equations will not be necessary. The 
influence of this new set of observations is computed 
and added to the previous solution.

2.	�The STR can be used for large systems, when the num-
ber of observations is very large and software can-
not process them. However CG is not relevant because 
generation of AT A will be very time consuming and 
also software may not be able to handle a whole sys-
tem of equations.

3.	�One can also say that the CG should act on normal 
equations which are more unstable than the original 
system, but the main problem of the STR is to estimate 
the regularization parameter from the system itself and 
not from its normal equations.

4.	�Another property of STR is the possibility of estimat-
ing the standard errors of the estimated parameters, 
which is not an easy task in the CG method.

5.	�The bias-correction step is very significant in STR but 
it is not simple in CG due to its nonlinearity.
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Tab. 2: Statistics of errors of recovered gravity anomalies using 
STR method. Unit: 1 mGal

Resolution Subsystems Min Mean Max Std rms

1.0° × 1.0° 1 -26.2 -0.6 22.0 6.9 7.0

1 + 2 -17.0 -0.6 20.3 6.4 6.4

1 + 2 + 3 -20.2 -0.6 19.6 6.3 6.4

0.5° × 0.5° 1 -27.3 -0.7 25.8 6.5 6.6

1 + 2 -25.6 -0.6 23.7 6.2 6.2
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