
Summary
The standard technique for GPS network adjustment is to use
the L1 phase observable for short baselines and the iono-
sphere-free linear combination of L1 and L2 phase observ-
ables for long baselines. The definition of short and long
baseline is subjective, and the resulting observable may be
quite different for intermediate baselines dependent on the
choice.

We derive and propose the use of the Best Linear Unbiased
Estimator (BLUE) of the combination of phase and code ob-
servations as well as an a priori ionosphere bias. The BLUE is
always at least as accurate as and usually better than any of
the previous observations, and it does not necessitate the
artificial division of the adjustment scheme into short and
long baselines.

ZZuussaammmmeennffaassssuunngg
Die Standardtechnik zur Ausgleichung von GPS-Netzen be-
steht bei kurzen Basislinien in der Nutzung der L1-Phasen-
messung und bei langen Basislinien in der Verarbeitung der
ionosphärischen Linearkombination der L1- und L2-Phasen-
beobachtungen. Die Definition einer kurzen und einer langen
Basislinie ist jedoch subjektiv, und das Ergebnis kann sich bei
Basislinien mittlerer Länge in Abhängigkeit vom Ansatz er-
heblich unterscheiden.

Wir leiten hier einen besten linearen erwartungstreuen
Schätzwert (Best Linear Unbiased Estimator; BLUE) für die
Kombination von Phasen- und Code-Messungen sowie einen
a priori Ionosphärenparameter ab. Dieser BLUE ist mindestens
so genau und im Allgemeinen besser als eine der vorangegan-
genen Observablen, die künstliche Unterscheidung zwischen
der Ausgleichung kurzer und langer Basislinien entfällt.

1 Introduction

Today dual frequency GPS is essential for precise posi-
tion, particularly for real time kinematic (RTK) applica-
tions. In all such applications the fixing of the carrier
phase ambiguities for both frequencies is crucial. The
success of this initialisation step is closely related with
the significance of the ionosphere bias. Using the double
difference observable, the magnitude of the ionosphere
bias is reduced and dependent on the baseline length. As
a consequence, there is always a critical baseline length,
say 15 km, from which the ionosphere bias starts to affect
the estimates of position. From dual frequency code and
phase GPS data the Best Linear Unbiased Combination
(BLUE) of phase ambiguities as well as satellite-to-re-

ceiver range can be formulated. Sjöberg (1999a,b) dis-
cussed the problems stemming from the ionosphere bias
with the BLUE1 (assuming no ionosphere bias) and BLUE2

(including modelling of the ionosphere bias). If there is
some a priori information on the ionosphere bias, a
biased estimator, the Restricted Best Linear Estimator
(RBLE), may be a better compromise between random
noise and ionosphere bias than any of these unbiased
estimators.

The studies of Sjöberg (1999a,b) were restricted to the
fixing of phase ambiguities. This study will extend the
investigation to the estimation of the satellite-to-receiver
range , which is the most essential quantity for the deter-
mination of the coordinates (x, y, z) of a wanted position
by the basic formula

, (1)

where (xs, ys, zs) is the position of the satellite. In addition,
we will throughout assume that the a priori information
of the ionosphere bias is available as an observation
(which might be zero) along with its standard error. As
we shall see, this has the advantage that we can formu-
late improved unbiased estimators for ambiguities and
range.

2 Observation equations and general estimators

From the data recorded by a pair of dual frequency phase
and code observing GPS receivers, the following obser-
vation equations can be formulated:

where ϕi and λi are the carrier phase observations and
wavelengths, respectively, fi and Ni the corresponding
frequencies and integer phase ambiguities, I the iono-
sphere bias and, finally, εij are random, uncorrelated ob-
servation errors. We will also assume that the data are
double differences (i. e. including two GPS receivers and
two satellites) and that the standard errors of the phase
observables (l1 and l2) are 6 mm and of code observables

(2)
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(l3 and l4) 60 cm. Hence, for later use we introduce the
ratio

. (3)

Our primary interest is to determine the satellite-to-re-
ceiver range ρ in real-time, i. e. from only one epoch of
data. The system of four equations (2) contains exactly
four unknowns, and the direct solution for ρ becomes

, (4a)

where

(4b)

with λ1 = 19.0 cm and λ2 = 24.4 cm, yielding the following
standard error of the estimator (4a):

, (5)

with the estimated value 1.78 m for previous value of σR.
This estimate for ρ is too poor for precise positioning.

One way to improve the estimate is to augment the sys-
tem (2) by some a priori unbiased estimate of the iono-
sphere bias:

, (6)

where εI is a random error. For example, it is well known
that the ionosphere bias for double difference observable
decreases with baseline length, so that for baselines with-
in, say, 15 km l5 can be set to zero with a certain standard
error.

All the information contained in Eqs. (2) and (6) can be
merged into the following general estimator of ρ:

, (7)

where ai are arbitrary constants. Inserting Eqs. (2) and (6)
one can rewrite the estimator as

(8a)

where

(8b)

is the random error of . It follows directly from Eq. (8a)

that it provides an unbiased estimator of ρ if and only if
the following conditions are satisfied:

, (9a)

(9b)

and

. (9c)

In order to fulfil Eq. (9b) one either has to set a1 and a2 to
zero (implying that the high quality phase data are re-
jected), or one or both of the integer ambiguities must be
known. Hence, a first goal must be to determine these
ambiguities before estimating ρ. This is not always pos-
sible in real-time applications, and such a failure will in-
evitably lead to a less accurate estimate of ρ. Below we
will study the Best Linear Unbiased Estimators (BLUEs)
of ρ under various conditions of knowing the ambigui-
ties. All BLUEs require that Eq. (9c) be satisfied, implying
that we are only interested in so-called »ionosphere-free«
linear combinations.

3 Short baselines

Short baselines we define as baselines so short that the
ionosphere bias can be omitted in the basic observation
model (2). If this is the case, the estimation of ρ improves
significantly. Then one can also fix the cycle ambiguities
within merely one epoch of observations (Sjöberg 1996,
1998 and Horemuz and Sjöberg 2002), and ρ becomes
the only remaining unknown of Eq. (2). In this case, ρ is
frequently solved only from the L1 phase observable,
yielding the estimator

(10)

with the standard error σϕλ, which is 6 mm according to
previous assumption.

However, this is not the best choice, but useful informa-
tion is omitted. A better choice is the BLUE which is
achieved by minimizing the variance of the general esti-
mator (7). However, if N1 and N2 are known, the observ-
ables l3 and l4 will not add any significant information
due to there relatively large standard errors, and the
BLUE is given by

(11)
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and precise positioning suitable for real-time applica-
tions.

For comparison we now study also the case when integer
ambiguities have not been fixed. In this case, the general
estimator (7) includes the first four observables only.
Eq. (8a) does not include the ionosphere bias term and
the coefficients a1 and a2 must be set to zero (i. e. no use
of phase observables) in order to eliminate the ambiguity
bias. As a result, the BLUE becomes

(12)

with standard error , which is 42 cm or 100 times
bigger than for the estimator of Eq. (11). This shows once
again the dramatic improvement gained by first solving
the ambiguities.

4 Long baselines with Nw fixed

For long baselines, the effect of the ionosphere bias ham-
pers the solution to phase ambiguities as well as satellite-
to-receiver range. Nevertheless, the wide-lane ambiguity
Nw = N1–N2 is easy to resolve also in this case from the
dual frequency code and phase GPS data (Wübbena
1985; Sjöberg 1998 and 1999a,b; Horemuz and Sjöberg
2002). Hence, we can assume that Nw is known, which
can be used to eliminate N2 from the system of equations
(2) plus (6). The resulting system can be written in matrix
notations

AX = L – ε , (13a)

where

; and (13b)

and ε is the vector of random errors of L. The system (13)
has five equations and three unknowns. Its least squares
solution (or BLUE) for X (to order k) reads

(14a)

and

, (14b)

where

(14c)

(14e)

and

.

In particular, we obtain the standard errors
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and

, (15c)

which, in the limit σI → 0 (and p → ∞; no ionosphere
bias), yield (to order k)
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If σϕλ is set to 6 mm this implies that the limiting values
for the standard errors of and become 34 mm and
0.16, respectively. Hence, in this limit all unknowns are
well determined already after a single epoch data.

The other extreme is the case when σI approaches infinity
(i. e. no a priori information about the ionosphere bias).
Then one obtains the standard errors
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(17b)

. (17c)

For σR set to 60 cm this yields the standard errors 1.67 m,
15.6 and 1.30 m for Eqs. (17a)–(17c), which tells us that
for no a priori information about the ionosphere bias,
the wide-lane ambiguity does not help much in estimat-
ing ρ and N1 compared to the original estimators from
model (2).

We may thus conclude that the a priori information
about the ionosphere bias is very critical for the outcome
of the estimators. The ratio between the posterior and a
priori variance of the ionosphere bias can be written

, (18)

which is limited by

. (19)

The lower limit is attained for a complete prior know-
ledge of the ionosphere bias, and the upper limit reflects
no prior information about the bias. Consequently, sig-
nificant prior information about the ionosphere bias can
be very advantageous for determining the unknowns of
Eq. (13a). If we require that be within 0.3 to be able
to fix N1 to the correct integer, it can be shown from
Eq. (15b) with σϕλ = 6 mm, σI must be within 6 cm. This
lower limit for σI is actually 1.9 times larger than pre-
vious limit presented by Blewitt (1989) and Sjöberg
(1999a) using a combination of wide-lane and iono-
sphere-free linear combination to estimate the ambiguity
of L1.

5 Long baselines with N1 and N2 fixed

If N1 and N2 are fixed, it implies that the ambiguities can
be removed from the unknowns of Eq. (2), and the qual-
ity of the estimate of ρ improves considerably also for
long baselines. Due to the high quality of the phase ob-
servables compared to code observables, the latter will
not contribute much to the solution for ρ (or I), but the
BLUE is well estimated by

(20)

with the standard error

, (21)

which, for a standard error of 6 mm for the phase obser-
vation, becomes 18 mm.

We now compare the estimates (11) and (20). Both are un-
biased linear combinations of L1 and L2 phase observa-
tions. However, Eq. (11), which has a more than four
times smaller standard error, assumes that the ionosphere
bias (I) is negligible, while estimator (20) includes the
modelling of I. Hence, the outcome of whether we model
the ionosphere or not is quite significant. Typically, GPS
software manufacturers provide a default choice I = 0 for
baselines within 15–20 km, while I is included as an un-
known for longer baselines.

We now consider the case when there is additional in-
formation (l5) on the ionosphere bias. Then the system of
equations can be written

AX = L – ε , (22a)

where

(22b)

li = (φi – Ni)λi for   i = 1,2 (22c)

and
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The least squares solution to this system of equations be-
comes
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The explicit solution for ρ can be expressed by

, (24a)

where

(24b)

with the standard error

. (25)

This estimator for ρ satisfies the conditions (9a)–(9c) for
unbiased estimation, and, as it also minimizes the ex-
pected variance, it is a BLUE.

The following special cases of the standard error (25) are
of particular interest.

Case 1 (No ionosphere effect): As σI approaches zero,
p goes to infinity and it follows that

as   p → ∞ , (26)

which is the same as for the BLUE (11) for no ionosphere
effect.

Case 2 (The ionosphere bias is completely unknown):

as   p → 0 . (27)

which agrees with the standard error (21) of the so-called
»ionosphere-free linear combination«. The standard error
of the BLUE (24a,b) is thus limited by the following in-
equalities

, (28)

where the lower limit prevails for no ionosphere bias (or
completely known bias) and the upper limit holds for a
significant but unknown ionosphere bias. Hence, is the
BLUE that yields a smooth transition between solutions
for various degrees of knowledge of the ionosphere bias.

6 Conclusions

Standard software for GPS network adjustment discrimi-
nates between short and long baselines. For short base-
lines the adjustment is typically carried out by the L1
phase observation alone, while for long baselines the
ionosphere-free linear combination L3 of the L1 and L2
phase observations is utilized. This implies that sub-opti-
mal estimators are used for most baselines. For short
baselines high quality L2 phase data is discarded, and for
long baselines the L3 solution is usually less accurate
than the BLUE, including some a priori information of
the ionosphere bias. In addition, the BLUE of the satel-
lite-to-receiver range, derived in this article, can be di-
rectly used as the homogeneous observable for all base-
lines. Hence, the less successful adjustment strategy of
dividing the network into short and long baselines with
different types of observables should be avoided.
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