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Jazaeri/Schaffrin/Snow – On Weigthed Total Least-Squares Adjustment
with Multiple Constraints an Singular Dispersion Matrices

Summary
The Total Least-Squares (TLS) adjustment with multiple con-
straints (including a quadratic constraint, e. g.) has seen in-
creased attention in Geodetic Science over the last five years.
We only refer to the contributions by Schaffrin and Felus
(2009) and by Fang (2013) who both provided different al-
gorithms for such cases as long as the dispersion matrices
involved are proportional to identity matrices (homoscedas-
tic case), or happen to be positive-definite (weighted, resp.
structured case). Here, a new algorithm is presented that tol-
erates positive-semidefinite dispersion matrices as well, pro-
vided that a certain rank condition is fulfilled to guarantee
the uniqueness of the constrained Weighted TLS solution.

Zusammenfassung
Die Ausgleichung nach der Total Least-Squares (TLS) Metho-
de unter gleichzeitiger Berücksichtigung von mehreren Re-
striktionen (darunter z. B. einer quadratischen) ist in jüngster
Vergangenheit verschiedentlich untersucht worden, besonders
zum Gebrauch in der Geodäsie. Dazu nennen wir bloß die Bei-
träge von Schaffrin und Felus (2009) sowie von Fang (2013),
die jeweils eigene Algorithmen präsentiert haben, zunächst
für den homoskedastischen Fall, wo die Kovarianz-Matrizen
proportional zur Einheitsmatrix sind, und dann für den regu-
lär gewichteten Fall, wo diese Matrizen positiv-definit sind.
Hier wird ein neuer Algorithmus vorgestellt, der auch positiv-
semidefinite Kovarianz-Matrizen zulässt, vorausgesetzt, dass
eine bestimmte Rang-Bedingung erfüllt ist, die die Eindeutig-
keit der restringierten und passend gewichteten TLS-Lösung
garantiert; dabei existieren die Gewichtsmatrizen im traditio-
nellen Sinne natürlich nicht mehr.

Keywords: Errors-In-Variables Model, Weighted Total Least-
Squares, Multiple Constraints, Singular Dispersion Matrices,
Uniqueness Condition

1 Introduction

In Geodetic Science, the Total Least-Squares (TLS) ap-
proach to adjust so-called Errors-In-Variables (EIV) Mod-
els without linearization has been well established over
the last decade. Here, we only refer to the contribution by
Felus and Schaffrin (2002, 2005), Schaffrin et al. (2006),
and Schaffrin (2007), all of which benefited generally
from the seminal paper by Golub and Van Loan (1980),
and the subsequent summary by Van Huffel and Vande-
walle (1991). Linear constraints, both fixed and stochas-
tic, were later added by Schaffrin and Felus (2005) and

Schaffrin (2006) before the case of multiple constraints
was treated by Schaffrin and Felus (2009), allowing both
linear(ized) constraints and one quadratic constraint.

In all contributions so far, the homoscedastic case was
assumed, were the dispersion matrices for the observa-
tion vector and the data matrix are proportional to iden-
tity matrices, with zero cross-covariances. Even the so-
called Generalized TLS approach, stressed by Van Huf-
fel and Vandewalle (1991), does not take more general
weight matrices into account, but is more concerned with
balanced estimation results.

Pioneering the use of diagonal weight matrices were
Markovsky et al. (2006) who, in their terminology, solved
the “elementwise weighted TLS problem,” surmising that
this might be the most general form of weighting that still
allows a “closed solution.” This statement, however, soon
became obsolete when Schaffrin and Wieser (2008) pre-
sented closed formulas and a weighted TLS regression al-
gorithm for fairly general positive-definite weight matri-
ces, assuming only a certain Kronecker product structure
for the dispersion matrix of the vectorized data matrix.
More recently, Fang (2011), Mahboub (2012), and Schaf-
frin et al. (2012) were indeed able to drop the Kronecker
product requirement altogether, while Fang (2011) and
Snow (2012) even designed algorithms for a weighted TLS
adjustment with cross-correlated observation vector and
data matrix.

So far, however, the dispersion matrices and conse-
quently the weight matrices had to be positive-definite
so that one can be chosen as the inverse of the other. On
the other hand, Neitzel and Schaffrin (2013) had already
found a rank condition for the Gauss-Helmert Model
(GH-Model) that guarantees a unique LEast-Squares So-
lution (LESS) even for a singular dispersion matrix, i. e.,
without the need of an inverse weight matrix. Know-
ing that the EIV-Model is a special case of a nonlinear
GH-Model, as shown by Schaffrin and Snow (2010) for
instance, this rank criterion was adopted by Snow (2012)
and Schaffrin et al. (2014) in order to find several algo-
rithms that would tolerate even positive-semidefinite dis-
persion matrices in a (properly weighted) TLS adjustment.
Since the TLS approach by Schaffrin and Felus (2009) to
the EIV-Model with multiple constraints was recently ex-
tended to the case of positive-definite dispersion, resp.
weight matrices by Fang (2014), in this paper an attempt
will be made to further extend the existing solutions for
the case of singular, i. e., positive-semidefinite dispersion
matrices in the presence of multiple constraints, provided
that the above-mentioned rank condition (in generalized
form) is met.
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After a comprehensive review of the various TLS algo-
rithms to treat the unconstrained EIV-Model with singu-
lar dispersion matrices in chapter 2, the TLS approach by
Fang (2014) to the case of multiple constraints will be re-
viewed in chapter 3, and eventually extended to the situ-
ation with singular dispersion matrices in chapter 4. Then
the new algorithm will be tested in chapter 5 with the
examples from Schaffrin and Felus (2009), Fang (2013),
Schaffrin et al. (2014), as well as two examples that could
not have been solved by any of the existing TLS algo-
rithms. Finally, some conclusions will be drawn.

2 A comprehensive review of the TLS approach
to the unconstrained EIV-Model with
singular dispersion matrices

Let the EIV-Model be defined, as in Snow (2012), by

y = (A − EA)
n×m

ξ + ey, rk A = m, (1a)

[
ey
eA

]
:=

[
ey

vec EA

]
∼(

[
0
0

]
,σ2

0 Q := σ2
0

[
Qy QyA

QT
yA QA

]
),

(1b)

where
y denotes the n × 1 observation vector,
ξ the m × 1 (unknown) parameter vector,
A the n × m data matrix with n > m = rk A,
ey the n × 1 (unknown) random error vector as-

sociated with y,
EA the n×m (unknown) random error matrix as-

sociated with A,
eA the nm × 1 vectorized form of EA,
σ2

0 the (unknown) variance component, and
Q the n(m + 1) × n(m + 1) symmetric non-

negative-definite cofactor matrix with
rk Q ≤ n(m + 1).

In case that the cofactor matrix Q is non-singular, a
unique weight matrix can be defined as its inverse:

P := Q−1 =
[

P11 P12
PT

12 P22

]
if rk Q = n(m + 1), (2)

which leads to the well-defined Weighted Total Least-
Squares (WTLS) objective function

[
eT

y , eT
A

] [
P11 P12
PT

12 P22

] [
ey
eA

]
= min.

s.t. y − (A − EA)ξ − ey = 0.
(3)

Based on the equivalent Lagrange target function

Φ(ey, eA,ξ , λ) = eT
y P11ey + 2eT

y P12eA + eT
AP22eA+

+2λT(
y − Aξ − ey +

(
ξT ⊗ In

)
eA

)
= stationary,

(4)

where λ denotes the n × 1 vector of Lagrange multipli-
ers, and ⊗ denotes the Kronecker-Zehfuss product of ma-
trices, defined by G ⊗ H := [gi j H] if G = [gi j]. The
Euler-Lagrange necessary conditions (or nonlinear nor-
mal equations) are obtained as

1
2

∂Φ

∂ey
= P11 ẽy + P12 ẽA − λ̂

.= 0, (5a)

1
2

∂Φ

∂eA
= PT

12 ẽy + P22 ẽA +
(
ξ̂ ⊗ In

)
λ̂

.= 0, (5b)

1
2

∂Φ

∂ξ
= −AT λ̂ + ẼT

Aλ̂
.= 0, (5c)

1
2

∂Φ

∂λ
= y − Aξ̂ − ẽy +

(
ξ̂T ⊗ In

)
ẽA

.= 0. (5d)

The corresponding sufficient condition is fulfilled since

1
2

∂2Φ

∂
[

ey
eA

]
∂

[
eT

y eT
A

] =
[

P11 P12
PT

12 P22

]
= Q−1 (6)

is positive-definite, under (2), which guarantees the min-
imum in (3).

Now, the residual vectors ẽy and ẽA are directly derived
from (5a) and (5b) in terms of λ̂ via

[
ẽy
ẽA

]
=

[
P11 P12
PT

12 P22

]−1 [
In

−(ξ̂ ⊗ In)

]
λ̂ =

=

[[
Qy − QyA

(
ξ̂ ⊗ In

)]
λ̂

[
QT

yA − QA
(
ξ̂ ⊗ In

)]
λ̂

]
.

(7)

Using (7) in (5d) leads to

y − Aξ̂ =
[
Qy − QyA(ξ̂ ⊗ In)

]
λ̂−

− (ξ̂ ⊗ In)T[
QT

yA − QA(ξ̂ ⊗ In)
]
λ̂ = Q1·λ̂

(8a)

with

Q1 :=
[
Qy − QyA(ξ̂ ⊗ In)− (ξ̂ ⊗ In)TQT

yA+

+ (ξ̂ ⊗ In)TQA(ξ̂ ⊗ In)
]

= Q1(ξ̂),
(8b)

or

Q1=
[
In −(ξ̂⊗In)T

]
[

Qy QyA
QT

yA QA

] [
In

−(ξ̂ ⊗ In)

]
=:B̂QB̂T

(8c)

for

B̂ :=
[
In −(ξ̂ ⊗ In)T

]
= B(ξ̂). (8d)

It is worth noting that Q1 will be nonsingular for a
positive-definite matrix Q, which may even be true for
some positive-semidefinite matrices Q. In this case, (8a)
can be solved for

λ̂ = Q−1
1 (y − Aξ̂) , (9)

which provides the estimated Lagrange multipliers – and
thus both residual vectors – as a function of the estimated
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parameters. Further exploiting (5c), in connection with (7)
and (9), now yields

ATQ−1
1 (y − Aξ̂)=AT λ̂=ẼT

Aλ̂=(λ̂T ⊗ Im) vec(ẼT
A)=

= (λ̂T ⊗ Im)Knm ẽA = (Im ⊗ λ̂)T ẽA = (10a)

= (Im ⊗ λ̂)T[
QT

yA − QA(ξ̂ ⊗ In)
]
Q−1

1 (y − Aξ̂) =

= −R1 · (y − Aξ̂) (10b)

with

R1 := (Im ⊗ λ̂)T[−QT
yAQ−1

1 + QA(ξ̂ ⊗ Q−1
1 )

]
=

= R1(ξ̂ , λ̂), (R1Q1 + ẼT
A)λ̂ = 0. (10c)

Here, Knm denotes an nm × nm commutation (or vec-
permutation) matrix; for more details, see Magnus and
Neudecker (2007).

Finally, (10b) can be converted into the so-called “gen-
eralized normal equations” of Schaffrin et al. (2012),
namely

(
ATQ−1

1 + R1
)

A · ξ̂ =
(

ATQ−1
1 + R1

)
y , (11)

which provide the estimated parameters as a function of
the estimated Lagrange multipliers (9) that enter the de-
finition for R1 in (10c). This leads to the iterative Algo-
rithm 1 of Mahboub type, as presented by Snow (2012,
chapter 2.1).

Employing the second identity in (10c), the system (11)
may be rewritten as

(A − ẼA)TQ−1
1 A · ξ̂ = (A − ẼA)TQ−1

1 y, (12)

which corresponds nicely to a result by Fang (2011). By
symmetric extension, (12) can be converted into the more
familiar system

(A−ẼA)TQ−1
1 (A−ẼA)·ξ̂=(A−ẼA)TQ−1

1 (y−ẼAξ̂) ,

(13)

which translates into the iterative Algorithm 2 of Fang
type, as described by Snow (2012, chapter 2.1.1).

Note that (9), together with (5c), can equivalently be
written as
[

Q1 A − ẼA
(A − ẼA)T 0

] [
λ̂

ξ̂

]
=

[
y − ẼAξ̂

0

]
(14a)

with

vec ẼA = ẽA =
[
QT

yA − QA(ξ̂ ⊗ In)
]
λ̂ (14b)

from (7), only requiring the invertibility of Q1 (not of Q
itself).

It is now straight-forward to obtain the Total Sum of
(weighted) Squared Residuals (TSSR) from (7) as

Ω(TSSR) =
[
ẽT

y ẽT
A

] [
P11 P12
P21 P22

] [
ẽy
ẽA

]
=

= λ̂T(B̂QB̂T)λ̂ = λ̂TQ1λ̂ = λ̂T(y − Aξ̂), (15a)

leading to the variance component estimate

σ̂2
0 = (n − m)−1 · λ̂T(y − Aξ̂) , (15b)

which is unique whenever Q1 is nonsingular, or whenever
rk(B̂Q) = rk B̂ = n in case of a positive-semidef inite
matrix Q.

However, as Schaffrin et al. (2013) have recently
proven, a unique weighted TLS solution can even be ob-
tained for a positive-semidefinite dispersion matrix Q as
long as the more general rank condition

rk
[
BQ A

]
= n (16)

of Neitzel and Schaffrin (2013) is fulfilled, still assuming
that rk A = m < n as defined in (1a). Under the criterion
(16), the system (14a) and (14b) can be rewritten as
[

Q3 A − ẼA
(A − ẼA)T 0

] [
λ̂

ξ̂

]
=

[
y − ẼAξ̂

0

]
(17a)

with

Q3 := Q1 + (A − ẼA)S(A − ẼA)T = Q3(ξ̂ , λ̂) (17b)
for any chosen positive-def inite m × m matrix S, and
with

vec ẼA = ẽA =
[
QT

yA − QA(ξ̂ ⊗ In)
]
λ̂. (17c)

Note that Q3 will be nonsingular under (16) as long as
rk[B̂Q | A − ẼA] = rk[B̂Q | A] = n, even though Q1
may be singular, leading to the iterative Algorithm 3 of
Fang type as described in Snow (2012, chapter 3.2.1). An
alternative algorithm of Mahboub type, using the nonsin-
gular matrix

Q2 := Q1 + ASAT = Q2(ξ̂) (18)

instead of Q3 in case of a singular matrix Q1, may be
developed along the lines of Snow (2012, chapter 3.1) as
well, eventually leading to the system

(
ATQ−1

2 A + R2
) · ξ̂ = ATQ−1

2 y (19a)

with

R2 :=
(

ATQ−1
2 AS − Im

)·[(Im ⊗ λ̂)TQA(Im ⊗ λ̂)
]
=

= R2(ξ̂ , λ̂) (19b)

and

λ̂ =
{

Q2 + AS·[(Im ⊗ λ̂)TQA(ξ̂ ⊗ In)
]}−1(y−Aξ̂)

(19c)

in the case of zero cross-correlations, i. e., QyA = 0. An
alternative development leads to

{[
AT − (Im ⊗ λ̂)TQT

yA
]
(Q�

2)
−1 A + R�

2
} · ξ̂ =

=
[
AT − (Im ⊗ λ̂)TQT

yA
]
(Q�

2)
−1 y

(20a)

with
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Q�
2 := Q1 +

[
A − QyA(Im ⊗ λ̂)

]
S·

· [A − QyA(Im ⊗ λ̂)
]T = Q�

2(ξ̂ , λ̂), (20b)

R�
2 :=

{[
AT − (Im ⊗ λ̂)TQT

yA
]
(Q�

2)
−1·

·[A−QyA(Im ⊗ λ̂)
]
S−Im

}·(Im ⊗ λ̂)TQA(Im ⊗ λ̂)=

= R�
2(ξ̂ , λ̂), (20c)

and

λ̂ =
{

Q�
2 +

[
A − QyA(Im ⊗ λ̂)

] · S·
· [(Im ⊗ λ̂)TQA(ξ̂ ⊗ In)

]}−1(y − Aξ̂)
(20d)

when cross-correlations are taken into account.

3 The weighted TLS adjustment in the presence
of multiple constraints – a brief review when
rk(BQ) = rk B

In the following, linear constraints as well as one
quadratic constraint are added to the model (1a) and (1b)
resulting in the EIV-Model with multiple constraints:

y = (A − EA)
n×m

ξ + ey, rk A = m, (21a)

[
ey
eA

]
:=

[
ey

vec EA

]
∼(

[
0
0

]
,σ2

0 Q := σ2
0

[
Qy QyA

QT
yA QA

]
),

(21b)

κ0 = K
l×m

ξ , ξT Mξ = α2
0 , (21c)

where
κ0 is a given l × 1 vector,
K is a fixed l × m matrix with rk K = l < m,
M is a fixed m × m symmetric, positive-

(semi)definite matrix, and
α2

0 is a given positive constant.

In contrast to (1b), however, where the dispersion matrix
Q could be singular as long as the rank condition (16)
would hold, the singularity of Q is now somewhat more
restricted to the case

rk(BQ) = rk B = n for B :=
[
In −(ξ ⊗ In)T

]
, (22)

similar to (8c) and (8d) where Q1 is supposedly nonsin-
gular. This case was recently discussed by Fang (2013),
but the derivations here will follow more the original ap-
proach by Schaffrin and Felus (2009) in the homoscedas-
tic situation. The new algorithm for the weighted TLS ad-
justment with multiple constraints under the more gen-
eral rank condition (16) will then be developed in the next
chapter.

Let us temporarily assume that Q is positive-definite
and hence nonsingular; then, the Weighted Total Least-
Squares (WTLS) objective function is well defined by

[
eT

y eT
A

] [
P11 P12
PT

12 P22

] [
ey
eA

]
= min.

s.t. y − Aξ − ey + EAξ = 0, κ0 − Kξ = 0,

α2
0 −ξT Mξ = 0,

(23)

and can equivalently be translated into the Lagrange tar-
get function

Φ(ey, eA,ξ , λ, µ1, µ2) := eT
y P11ey + 2eT

y P12eA+

+eT
AP22eA + 2λT(y − Aξ − ey + (ξT ⊗ In)eA)−

−2µT
1 (κ0 − Kξ) −µ2(α2

0 −ξT Mξ) = stationary.

(24)

The corresponding Euler-Lagrange necessary conditions
will read

1
2

∂Φ

∂ey
= P11 ẽy + P12 ẽA − λ̂

.= 0, (25a)

1
2

∂Φ

∂eA
= PT

12 ẽy + P22 ẽA +
(
ξ̂ ⊗ In

)
λ̂

.= 0, (25b)

1
2

∂Φ

∂ξ
= −AT λ̂ + ẼT

Aλ̂ + KTµ̂1 + Mξ̂ · µ̂2
.= 0, (25c)

1
2

∂Φ

∂λ
= y − Aξ̂ − ẽy +

(
ξ̂T ⊗ In

)
ẽA

.= 0, (25d)

1
2

∂Φ

∂µ1
= −κ0 + Kξ̂

.= 0, (25e)

∂Φ

∂µ2
= −α2

0 + ξ̂T Mξ̂
.= 0, (25f)

and provide the system of nonlinear normal equations for
the estimated parameters ξ̂ and the residual vectors ẽy
and ẽA, in particular since the sufficient condition for a
minimum in (23) is fulfilled as

1
2

∂2Φ

∂
[

ey
eA

]
∂

[
eT

y eT
A

] =
[

P11 P12
PT

12 P22

]
= Q−1 (26)

is positive-definite.
First, from (25a) and (25b), the two residual vectors are

directly derived in terms of λ̂ through inversion as in (7),
namely as

[
ẽy
ẽA

]
=

[
P11 P12
PT

12 P22

]−1 [
In

−(ξ̂ ⊗ In)

]
· λ̂ =

= (QB̂T)λ̂ =

[[
Qy − QyA

(
ξ̂ ⊗ In

)]
λ̂[

QT
yA − QA

(
ξ̂ ⊗ In

)]
λ̂

]
.

(27)

Inserting (27) into (25d) now leads to

y − Aξ̂ =
(

B̂QB̂T)
λ̂ =: Q1 · λ̂ (28)

just as in (8a) to (8d), with a non-singular matrix Q1
owing to the assumption (22). Note that this assumption
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will be given up in the next chapter; but, here, the inver-
sion of (28) into

λ̂ = Q−1
1 (y − Aξ̂) (29)

is still allowed, providing the estimated Lagrange multi-
pliers as a function of the estimated parameters.

Using (29) in (25c) then yields the identity

�
A − ẼA

�TQ−1
1

�
y − Aξ̂

�
= KTµ̂1 + Mξ̂ · µ̂2, (30a)

which immediately implies the identity

�
A − ẼA

�TQ−1
1

�
A − ẼA

� · ξ̂ + KTµ̂1 =

=
�

A − ẼA
�TQ−1

1
�

y − ẼAξ̂
� − Mξ̂ · µ̂2

(30b)

that needs to be solved along with (25e) and (25f). This,
equivalently, means that the estimated parameters from
the extended system
�
(A − ẼA)TQ−1

1 (A − ẼA) KT

K 0

� �
ξ̂

µ̂1

�
=

=
�
(A − ẼA)TQ−1

1 (y − ẼAξ̂)− Mξ̂ · µ̂2
κ0

� (31a)

must simultaneously satisfy the “secular equation” from
(25f), namely

ξ̂T Mξ̂ = α2
0 , where ξ̂ = ξ̂(λ̂, µ̂1, µ̂2). (31b)

By introducing the abbreviations

�
N̂1 ĉ1

�
:=

�
A − ẼA

�TQ−1
1

��
A − ẼA

�
y − ẼAξ̂

�
=

=
�
N̂1(ξ̂ , λ̂) ĉ1(ξ̂ , λ̂)

�
, (32)

the estimated parameter vector from (31a) may be for-
mally described as

ξ̂=
�
N̂−1

1 ĉ1+N̂−1
1 KT(KN̂−1

1 KT)−1(κ0−KN̂−1
1 ĉ1)

�

−N̂−1
1

�
Im−KT(KN̂−1

1 KT)−1KN̂−1
1

�
Mξ̂ ·µ̂2=

(33a)

=: w1 − z1 · µ̂2 (33b)

so that the “secular equation” (31b) turns into the
quadratic equation

(zT
1 Mz1)·µ̂2

2 − 2(wT
1 Mz1)·µ̂2 + (wT

1 Mw1−α2
0) = 0 .

(33c)

Once (33a) to (33c) is solved, the Total Sum of (weighted)
Squared Residuals (TSSR) can be expressed as in (15a) by

Ω(TSSR) = λ̂T(B̂QB̂T)λ̂ = λ̂T(y − Aξ̂) =

= σ̂2
0 (n − m + l + 1), (34)

thus providing a variance component estimate for this
case.

Obviously, the system (33a) to (33c) is fully consistent
with the one provided by Fang (2013, chapter 3). More
importantly, in the homoscedastic case, the system (33a)
to (33c) can as well be transformed into the implicit eigen-
value problem provided by Schaffrin and Felus (2009,
eq. 24) when the residual matrix ẼA and the (hidden) vec-
tor λ̂ are both expressed in terms of the factor ν̂ := Ω

from (34). A proof will be published elsewhere.

4 The new algorithm for a weighted TLS
adjustment with multiple constraints when
Q is singular with rk(BQ) < rk B

In this chapter, the weighted TLS adjustment with multi-
ple constraints will be extended to the case where the dis-
persion matrix Q is singular and reduces the rank of B,
i.e., rk(BQ) < rk B = n, but still maintains the rank
condition (16), namely rk

�
BQ | A

�
= n = rk B, follow-

ing similar lines as in chapter 2 for the unconstrained
weighted TLS adjustment. For this purpose, the system
(31a) and (31b) in conjunction with (29) is rewritten in
the form




Q1 A − ẼA 0
(A − ẼA)T 0 −KT

0 −K 0







λ̂

ξ̂

µ̂1


 =




y − ẼAξ̂

Mξ̂ · µ̂2
−κ0


 ,

(35a)

ξ̂T Mξ̂ = α2
0 where ξ̂ = ξ̂(λ̂, µ̂1, µ̂2), (35b)

which nicely reflects the equation (25c) again. Obviously,
by eliminating λ̂ from (35a), the system (31a) is repro-
duced, where ẼA comes from (27) and µ̂2 from (33c). In
the present case, however, it is not so easy to eliminate
λ̂ directly since now the n × n matrix Q1 = B̂QB̂T has
only rk Q1 = rk(B̂Q) < n and, thus, is singular.

On the other hand, due to the rank condition (16), the
matrix Q3 = Q3(λ̂, ξ̂) as defined in (17b) should be in-
vertible as long as

rk Q3 = rk
�
B̂Q (A − ẼA)

�
= rk

�
B̂Q A

�
= n (36)

can be maintained for the residual matrix ẼA. It is, there-
fore, suggested to employ the middle part of (35a) in the
forms

KS(A − ẼA)T · λ̂ = KS
�
KTµ̂1 + Mξ̂ · µ̂2

�
, (37a)

respectively

(A − ẼA)S(A − ẼA)T ·λ̂=(A − ẼA)S
�
KTµ̂1+Mξ̂ · µ̂2

�
,

(37b)

where the positive-def inite m × m matrix S may be cho-
sen in a suitable manner. After adding (37b) to the upper
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part of (35a), and (37a) to the lower part, the new system
reads:




Q3 A−ẼA −(A−ẼA)SKT

(A−ẼA)T 0 −KT

−KS(A−ẼA)T −K KSKT







λ̂

ξ̂

µ̂1


=

=



(y−ẼAξ̂)+(A−ẼA)SMξ̂ ·µ̂2

Mξ̂ ·µ̂2
−(κ0+KSMξ̂ ·µ̂2)


,

(38)

which needs to be solved in conjunction with (35b). Due
to the nonsingularity of Q3, now λ̂ may be eliminated via

λ̂=Q−1
3

�
(y−ẼAξ̂)−(A−ẼA)ξ̂+

+(A−ẼA)S(KTµ̂1+Mξ̂ ·µ̂2)
�
,

(39)

which compares nicely to equation (29). Feeding (39)
back into the system (38) now leads to

�
(A−ẼA)TQ−1

3 (A−ẼA)
K[Im − S(A − ẼA)TQ−1

3 (A − ẼA)]

[Im−(A−ẼA)TQ−1
3 (A−ẼA)S]KT

−K[Im−S(A−ẼA)TQ−1
3 (A−ẼA)]SKT

�
·
�

ξ̂

µ̂1

�
=

=




(A − ẼA)TQ−1
3 (y − ẼAξ̂)−

−[Im − (A − ẼA)TQ−1
3 (A − ẼA)S]Mξ̂ · µ̂2

κ0 − KS(A − ẼA)TQ−1
3 (y − ẼAξ̂)+

+K[Im − S(A − ẼA)TQ−1
3 (A − ẼA)]SMξ̂ · µ̂2




(40)

or, perhaps preferably, to

�
N̂3 KT

K 0

� �
ξ̂

µ̂1

�
:=

�
(A−ẼA)TQ−1

3 (A−ẼA) KT

K 0

� �
ξ̂

µ̂1

�
=

=




(A − ẼA)TQ−1
3

�
y − ẼAξ̂+

+(A − ẼA)S(KTµ̂1 + Mξ̂ · µ̂2)
� − Mξ̂ · µ̂2

κ0


 =:

(41a)

=:
�

ĉ3−
�
Im−(A−ẼA)TQ−1

3 (A−ẼA)S
�
Mξ̂ ·µ̂2

κ0

�
=:

=:
�

ĉ3−d̂3·µ̂2
κ0

�
, (41b)

where d̂3 = d̂3(ξ̂ , λ̂) and N̂3 = N̂3(ξ̂ , λ̂), but ĉ3 =
ĉ3(ξ̂ , λ̂, µ̂1) also depends on µ̂1. Equation (41a) allows
the formal solution

ξ̂=
�
N̂−1

3 ĉ3+N̂−1
3 KT(KN̂−1

3 KT)−1�κ0−KN̂−1
3 ĉ3

��−
− N̂−1

3
�
Im − KT(KN̂−1

3 KT)−1KN̂−1
3

�·
· �Im − (A − ẼA)TQ−1

3 (A − ẼA)S
�
Mξ̂ · µ̂2 =

(42a)

=: w3 − z3 · µ̂2, (42b)

with w3 = w3(ξ̂ , λ̂, µ̂1) and z3 = z3(ξ̂ , λ̂), which, when
reinserted into (35b), provides the “secular equation”

(zT
3 Mz3)·µ̂2

2 − 2(wT
3 Mz3)·µ̂2+(wT

3 Mw3 −α2
0)=0 .

(42c)

Of the two solutions, the one that minimizes the TSSR
will be selected, which can be computed as in (34) when
taking λ̂ from (39). Alternatively, the system (40) can be
handled in the same way as the system (31a) before.

Based on (42a) to (42c), the novel Algorithm 1 is pro-
posed in equations (43a) to (43p).

5 Numerical examples

In this chapter, we apply the new Algorithm 1 to a few
numerical examples. These include a geodetic resection
problem from Schaffrin and Felus (2009), a 2-dimensional
rigid-transformation problem presented by Fang (2014),
and a 2-dimensional similarity-transformation problem
from Schaffrin et al. (2014). In all cases, a “model check”
is made after the adjustment, which confirms that

�y − Aξ̂ + ẼAξ̂ − ẽy� ≈ 0, �Kξ̂ −κ0� ≈ 0,

and |ξ̂T Mξ̂ −α2
0 | ≈ 0,

(44)

where the approximation signs reflect the finiteness of
machine precision and the fact that the algorithm’s con-
vergence threshold δ is nonzero.

5.1 Two examples with multiple constraints, but
nonsingular dispersion matrices

5.1.1 An example from Schaffrin and Felus (2009),
homoscedastic case

Schaffrin and Felus (2009) solved an overdetermined
“simplified geodetic resection” problem, which essentially
amounts to estimating coordinates of a physical location
based on geodetic measurements made from it. In their
case, 3-dimensional coordinates were estimated based on
four (simulated) measurements; see their chapter 5 for a
more detailed description.

The matrix [y | A], comprised of the observation vec-
tor y and the data matrix A, together with its associated
(nonsingular) error dispersion matrix D{vec[ey | EA]},
are given by

�
y A

�
:=




6 −0.5 1 0
3 0 1 0
4 0 0 1

10 1 0 1


 and

D{
�

ey
eA

�
} = σ2

0 In(m+1),

(45a)
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Algorithm 1
For the weighted TLS adjustment with multiple constraints when Q is singular with rk(BQ) < rk B

Step 1: Compute an initial solution
[
ξ̂(0)

µ̂
(0)
1

]
:=

[(
ATQ+

y A
)

KT

K 0

]+ [
ATQ+

y y
κ0

]
, Ẽ(0)

A := 0, µ̂
(0)
2 := 0, (43a)

where Q+
y represents the “pseudo-inverse” of Qy;

Step 2: Repeat for i ∈ N:

B̂(i) :=
[

In −(
ξ̂(i−1) ⊗ In

)T
]

, Q(i)
1 := B̂(i)Q

(
B̂(i))T

, (43b)

Q(i)
3 := Q(i)

1 +
(

A − Ẽ(i−1)
A

)
S
(

A − Ẽ(i−1)
A

)T , (43c)

N̂(i)
3 :=

(
A − Ẽ(i−1)

A

)T(
Q(i)

3

)−1(A − Ẽ(i−1)
A

)
, (43d)

ĉ(i)
3 :=

(
A − Ẽ(i−1)

A

)T(
Q(i)

3

)−1·[y − Ẽ(i−1)
A ξ̂(i−1)+

(
A − Ẽ(i−1)

A

)
SKTµ̂

(i−1)
1

]
, (43e)

d̂(i)
3 :=

[
Im−

(
A − Ẽ(i−1)

A

)T(
Q(i)

3

)−1(A − Ẽ(i−1)
A

)
S
]
M · ξ̂(i−1), (43f)

w(i)
3 :=

(
N̂(i)

3

)−1 ĉ(i)
3 +

(
N̂(i)

3

)−1KT[
K

(
N̂(i)

3

)−1KT]−1[
κ0 − K

(
N̂(i)

3

)−1 ĉ(i)
3

]
, (43g)

z(i)
3 :=

(
N̂(i)

3

)−1[Im − KT[
K

(
N̂(i)

3

)−1KT]−1K
(

N̂(i)
3

)−1] · d̂(i)
3 , (43h)

a(i)
1 :=

(
z(i)

3

)T Mz(i)
3 , a(i)

2 :=
(
w(i)

3

)T Mz(i)
3 , a(i)

3 :=
(
w(i)

3

)T Mw(i)
3 , (43i)

(
µ̂

(i)
2

)
1/2 =

a(i)
2

a(i)
1

±
√(

a(i)
2 /a(i)

1

)2
+

(
α2

0 − a(i)
3

)
/a(i)

1 , (43j)

(
ξ̂(i))

1/2 := w(i)
3 − z(i)

3 · (µ̂(i)
2

)
1/2, (43k)

(
µ̂

(i)
1

)
1/2 := −[

K
(

N̂(i)
3

)−1KT]−1[
κ0 − K

(
N̂(i)

3

)−1(ĉ(i)
3 − d̂(i)

3

(
µ̂

(i)
2

)
1/2

)]
, (43l)

(
λ̂(i))

1/2 =
(
Q(i)

3

)−1[(y − Ẽ(i−1)
A ξ̂(i−1))−(

A − Ẽ(i−1)
A

)(
ξ̂(i))

1/2+

+
(

A − Ẽ(i−1)
A

)
S
(
KT(

µ̂
(i)
1

)
1/2 + M

(
ξ̂(i))

1/2·
(
µ̂

(i)
2

)
1/2

)]
,

(43m)

Ω(i)(TSSR) := min
{(

λ̂
(i)
1/2

)T(
y − Aξ̂(i))} =

(
σ̂2

0
)(i) · (n − m + l + 1) ⇒ {ξ̂(i), µ̂(i)

1 , µ̂(i)
2 , λ̂(i)}, (43n)

ẽ(i)
A =

[
QT

yA − QA
(
ξ̂(i) ⊗ In

)] · λ̂(i), Ẽ(i)
A = Invec ẽ(i)

A , (43o)

equivalent to ẽ(i)
A = vec Ẽ(i)

A ;

Until
∥∥ξ̂(i) − ξ̂(i−1)∥∥ < δ and

∥∥λ̂(i) − λ̂(i−1)∥∥ < δ for a chosen threshold δ. (43p)

respectively, with m = 3 and n = 4. The quadratic con-
straints are provided by

ξ2
1

122 +
ξ2

2
82 +

ξ2
3

122 = 1 ⇒

⇒ M =



(1/12)2 0 0

0 (1/8)2 0
0 0 (1/12)2


 and α2

0 = 1.

(45b)

An additional linear constraint is given by

−2ξ1 + 3ξ3 = 16 ⇒ K =
�−2 0 3

�
and κ0 = 16,

(45c)

leading to a system redundancy of 4 − 3 + 1 + 1 = 3.
A convergence threshold of δ = 1 × 10−14 was used for
Algorithm 1, and the identity matrix was chosen for S,
i. e., S = I3.



Fachbeitrag Jazaeri/Schaffrin/Snow, On Weighted Total Least-Squares Adjustment with …

236 zfv   4/2014   139. Jg.

The results of Algorithm 1 are shown in Tab 1. The so-
lution agrees with that of Schaffrin and Felus (2009) to
within 1 × 10−5 for all estimated parameters and the
TSSR. We do not expect an exact match since their con-
vergence threshold was not reported. It is noted that
the number of iterations drops from 16 to 12 when the
convergence threshold for Algorithm 1 is increased to
δ = 1 × 10−10. The augmented matrix of residuals turns
out to be

�
ẽy ẼA

�
=




0.0111 −0.0288 −0.0690 −0.0782
−0.0335 0.0870 0.2086 0.2366
−0.0318 0.0825 0.1979 0.2244

0.0035 −0.0091 −0.0218 −0.0247


 .

5.1.2 An example from Fang (2014), weighted case for
nonsingular Q1

Next we consider a 2-dimensional rigid-transformation
problem solved by Fang (2014), who used the horizon-
tal coordinates of a 3-dimensional data set presented
by Felus and Burtch (2009). Given a set of coordinates
(xi , yi), i = 1, . . . , n/2, determined for n/2 locations in a
source coordinate system and a corresponding set of co-
ordinates (Xi , Yi) determined in a target coordinate sys-
tem, together with their respective error dispersion ma-
trices, the problem is to estimate three transformation pa-
rameters between the source and target systems, namely a
rotation angle α and two translation parameters t1 and t2.

Rather than to estimate the rotation angle α directly,
it is common to estimate the trigonometric terms cosα

and sinα so that the unknown parameter vector is
defined in terms of the transformation parameters as
ξ := [cosα, sinα, t1, t2]T; thus m = 4. Following Fang’s
ordering of the data variables, this approach permits a
linear model of the form

y:=




X1
...

Xn/2
Y1
...

Yn/2



≈Aξ :=




x1 y1 1 0
...

...
...

...
xn/2 yn/2 1 0
y1 −x1 0 1
...

...
...

...
yn/2 −xn/2 0 1







cosα

sinα

t1
t2


 ,

(46a)

where the “equals approximately” sign is used due to ran-
dom errors in the data. This problem does not include a
linear constraint on the parameters; however, in order to
enforce a “rigid” transformation, the quadratic constraint

cos2 α + sin2 α = 1 ⇒ ξT Diag([1, 1, 0, 0])ξ = 1 =: α2
0

(46b)

is applied. Of course, such a problem can still be solved
using Algorithm 1 provided that all terms in K are re-
moved from the algorithm.

In this problem, n = 8, and since there are no linear
constraints involved, the system redundancy is n−m + 1
= 8 − 4 + 1 = 5. Fang’s data are listed in Tab. 2.

Let the random errors of the coordinates from the
source and target systems be represented by the n × 1
vectors exy and eXY , respectively. For the prob-
lem at hand, the error distribution is described by
D{vec[exy, eXY]} = σ2

0 · I2n. Due to the structure of the
data matrix A, the cofactor matrix Q (introduced in (1b)
and (21b) is generated by Q = Z · I2n · ZT , where the
n(m + 1) × 2n matrix Z is defined as

Z :=




In 0 0
0 In/2 0
0 0 In/2
0 0 In/2
0 −In/2 0
0

2n×n
0 0



⇒

⇒ Q =




In 0
n×4n

0
4n×n

In/2 0 0 −In/2
0 In/2 In/2 0
0 In/2 In/2 0

−In/2 0 0 In/2

02n

02n 02n




,

(46c)

The results of Algorithm 1 are shown in Tab 1. The so-
lution agrees with that of Schaffrin and Felus (2009) to
within 1 × 10−5 for all estimated parameters and the
TSSR. We do not expect an exact match since their con-
vergence threshold was not reported. It is noted that
the number of iterations drops from 16 to 12 when the
convergence threshold for Algorithm 1 is increased to
δ = 1 × 10−10. The augmented matrix of residuals turns
out to be

�
ẽy ẼA

�
=




0.0111 −0.0288 −0.0690 −0.0782
−0.0335 0.0870 0.2086 0.2366
−0.0318 0.0825 0.1979 0.2244

0.0035 −0.0091 −0.0218 −0.0247


 .

5.1.2 An example from Fang (2014), weighted case for
nonsingular Q1

Next we consider a 2-dimensional rigid-transformation
problem solved by Fang (2014), who used the horizon-
tal coordinates of a 3-dimensional data set presented
by Felus and Burtch (2009). Given a set of coordinates
(xi , yi), i = 1, . . . , n/2, determined for n/2 locations in a
source coordinate system and a corresponding set of co-
ordinates (Xi , Yi) determined in a target coordinate sys-
tem, together with their respective error dispersion ma-
trices, the problem is to estimate three transformation pa-
rameters between the source and target systems, namely a
rotation angle α and two translation parameters t1 and t2.

Rather than to estimate the rotation angle α directly,
it is common to estimate the trigonometric terms cosα

and sinα so that the unknown parameter vector is
defined in terms of the transformation parameters as
ξ := [cosα, sinα, t1, t2]T; thus m = 4. Following Fang’s
ordering of the data variables, this approach permits a
linear model of the form

y:=




X1
...

Xn/2
Y1
...

Yn/2



≈Aξ :=




x1 y1 1 0
...

...
...

...
xn/2 yn/2 1 0
y1 −x1 0 1
...

...
...

...
yn/2 −xn/2 0 1







cosα

sinα

t1
t2


 ,

(46a)

where the “equals approximately” sign is used due to ran-
dom errors in the data. This problem does not include a
linear constraint on the parameters; however, in order to
enforce a “rigid” transformation, the quadratic constraint

cos2 α + sin2 α = 1 ⇒ ξT Diag([1, 1, 0, 0])ξ = 1 =: α2
0

(46b)

is applied. Of course, such a problem can still be solved
using Algorithm 1 provided that all terms in K are re-
moved from the algorithm.

In this problem, n = 8, and since there are no linear
constraints involved, the system redundancy is n−m + 1
= 8 − 4 + 1 = 5. Fang’s data are listed in Tab. 2.

Let the random errors of the coordinates from the
source and target systems be represented by the n × 1
vectors exy and eXY , respectively. For the prob-
lem at hand, the error distribution is described by
D{vec[exy, eXY]} = σ2

0 · I2n. Due to the structure of the
data matrix A, the cofactor matrix Q (introduced in (1b)
and (21b) is generated by Q = Z · I2n · ZT , where the
n(m + 1) × 2n matrix Z is defined as

Z :=




In 0 0
0 In/2 0
0 0 In/2
0 0 In/2
0 −In/2 0
0

2n×n
0 0



⇒

⇒ Q =




In 0
n×4n

0
4n×n

In/2 0 0 −In/2
0 In/2 In/2 0
0 In/2 In/2 0

−In/2 0 0 In/2

02n

02n 02n




,

(46c)

Tab. 2: Data for the 2-dimensional rigid-transformation 
problem

Point No. xi yi Xi Yi

1   30   40 290 150

2 100   40 420   80

3 100 130 540 200

4   30 130 390 300

Tab. 1: Solution for the geodetic resection problem

Quantity Estimate/Calculation

ξ̂1 2.597297

ξ̂2 6.230453

ξ̂3 7.064865

Ω TSSR( ) 0.218544

σ̂ 0
2 (0.269904)2

redundancy 3

y A E e− + −ˆ ˆξξ ξξ A y 1.3 × 10–15

Kξ̂ξ 16.000000

ˆ ˆξξ ξξT M 1.000000

δ (convergence threshold) 1 × 10–14

S I3

Number of iterations 16
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with 02n representing a 2n × 2n matrix of zeros. Note
that, though the cofactor matrix Q is singular, the matrix
Q1 (defined in (8b) resp. (28)) turns out to be nonsingular
in this case.

A convergence threshold of δ = 1 × 10−12 and the
matrix S = 1 × 10−4 · I4 were used in Algorithm 1. The
results of the algorithm are listed in Tab. 3. These results
match exactly those presented in the independent work
by Fang (2014). The very large value for the TSSR reveals
that the data do not fit well to the rigid-transformation
model, which may be a consequence of applying a differ-
ent model than that used by Felus and Burtch (2009) for
the 3-dimensional superset, as was already suggested by
Fang. Nevertheless, our purpose for presenting this prob-
lem has been satisfied, which is to show the flexibility of
our new algorithm.

Finally, the predicted random errors (residuals)

�
ẽy ẼA

�
=




−32.6402 21.6305 25.7997 0 0
3.9843 −16.5566 16.1227 0 0

37.6402 −30.0749 −22.6464 0 0
−8.9843 25.0009 −19.2760 0 0
−8.2535 25.7997 −21.6305 0 0

−22.7637 16.1227 16.5566 0 0
0.7535 −22.6464 30.0749 0 0

30.2637 −19.2760 −25.0009 0 0




.

confirm that the structure of the data matrix A has been
replicated exactly in the residual matrix ẼA.

5.2 Some new examples, with singular dispersion
matrices, not solvable by previously existing
algorithms

In this section, we again turn our attention to a 2-
dimensional transformation problem but now of type
similarity transformation, which differs from the rigid
transformation in that a transformation scale-factor is
also estimated. In these experiments, the random errors
associated with the data variables are not iid. Instead, the
dispersion matrices for the random errors in the variables
of both the source and target coordinate systems are full
and turn out to be singular such that the matrix Q1 is
also singular. The singular nature of Q1 makes this prob-
lem unsolvable by previously existing algorithms, which
motivated our design of Algorithm 1.

The measurement data are taken from Snow (2012) and
are listed in Tab. 4. The 10 × 10 cofactor matrices Qxy
and QXY are also taken from Snow (2012, Appendix A.2),
but are not listed here for the sake of space. The most
important characteristic of these matrices is their rank;
both have a rank of seven (nullity of size three), giving
rise to rk Q1 = 8 for the 10 × 10 matrix Q1.

5.2.1 An unconstrained similarity transformation

A variation of Algorithm 1 can be used for models with-
out constraints. The algorithm is modified by omitting
all terms associated with the linear and quadratic con-
straints, thereby resulting in the same algorithm as that
presented by Snow (2012, chapter 3.2.1).

The model details are left for the next section, where
linear and quadratic constraints are incorporated. Here we
simply present the solution for the unconstrained case in
Tab. 5, followed by a listing of the residuals (cf. Snow
2012, chapter 6.3).

The residuals are given by�
ẽy ẼA

�
=

=




1.0204 0 0 −4.4026 5.3231
0.8998 0 0 −5.3231 −4.4026
0.3453 0 0 −1.8617 −0.5454

−0.1634 0 0 0.5454 −1.8617
−1.5805 0 0 7.1386 −6.2318
−0.9923 0 0 6.2318 7.1386

1.0399 0 0 −4.2616 6.8490
1.2009 0 0 −6.8490 −4.2616

−0.8250 0 0 3.3873 −5.3948
−0.9450 0 0 5.3948 3.3873




× 10−3m,

Tab. 4: Coordinate estimates in source and target systems

Point xi [m] yi [m] Xi [m] Yi [m]

1 453.8001 137.6099 400.0040 100.0072

2 521.2865 350.7972 500.0019 299.9994

3 406.8728 433.9247 399.9925 399.9933

4 110.5545 386.9880 100.0059 400.0022

5 157.4861   90.6802   99.9956   99.9978

Tab. 3: Solution for the 2-dimensional rigid-transforma-
tion problem

Quantity Estimate/Calculation

ˆ : cosξ α1 = 0.810728

ˆ : sinξ α2 = 0.585423

ˆ : ˆξ3 1= t 307.541719

ˆ : ˆξ4 2= t 151.640630

Ω TSSR( ) 8163.065565

σ̂ 0
2 (40.405607)2

redundancy 5

y A E e− + −ˆ ˆξξ ξξ A y 2.4 × 10–13

ˆ ˆξξ ξξT M 1.00000000000000

δ (convergence threshold) 1 × 10–12

S 1 × 10–4 · I3

Number of iterations 3
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where the structure of the data matrix A is replicated in
the residual matrix ẼA.

5.2.2 A constrained similarity transformation

Following Snow’s (2012) arrangement of the variables
and parameters, the EIV-Model with linear and quadratic
constraints is provided by

y
n×1

:=




X1
Y1
· · ·

Xn/2
Yn/2




=




1 0 x1 −y1
0 1 y1 x1
...

...
...

...
1 0 xn/2 −yn/2
0 1 yn/2 xn/2




ξ−

−




0 0 ex1 −ey1
0 0 ey1 ex1
...

...
...

...
0 0 exn/2 −eyn/2

0 0 eyn/2 exn/2




ξ +




eX1
eY1· · ·

eXn/2

eYn/2




=: (A − EA)
n×m

·ξ + ey with rk A = m = 4, (47a)
�

ey
eA

�
:=

�
ey

vec EA

�
∼ (

�
0
0

�
,σ2

0

�
Qy 0
0 QA

�
=: σ2

0 Q),

(47b)

Kξ = κ0 and ξT Mξ = α2
0 . (47c)

The parameter vector ξ can be expressed in terms
of the 2-dimensional transformation parameters by

ξ := [t1, t2, ω cosα, ω sinα]T , where the transforma-
tion scale-factor ω appears in the last two elements. Let-
ting the random errors of the coordinates from the source
and target systems be denoted by exy and eXY , respec-
tively, their given dispersion matrices can be expressed
as D{exy} = σ2

0 Qxy and D{eXY} = σ2
0 QXY , respec-

tively. Note that there are no cross-correlations between
the two dispersion matrices, as the measurements made
in the respective source and target systems come from in-
dependent sources.

Then, the dispersion matrix in (47b) can be expressed
in terms of the given dispersion matrices as

σ2
0 Q := σ2

0

�
Qy 0
0 QA

�
:=

:= σ2
0




QXY 0

0

0 . . .
... 0 . . .

... Qxy QxyTT

TQxy TQxyTT




,
(48a)

where

T
n×n

:= Diag(T �, . . . , T �), with T � :=
�

0 −1
1 0

�
. (48b)

See Snow (2012) or Schaffrin et al. (2014) for further de-
tails.

Now, to conduct our experiment, let us suppose that
the ratio between the transformation shift parameters t1
and t2 is known and that the transformation scale-factor
is known, too. The given ratio can be imposed via a linear
constraint in the model, while the given scale factor can
be imposed via a quadratic constraint. It would be inter-
esting to use, for the linear constraint, the ratio of t̂1 and
t̂2 estimated within the unconstrained model from chap-
ter 5.2.1 and, likewise, take the estimate of ω̂ within that
unconstrained model for the quadratic constraint. These
values are taken from Tab. 5 and are used in the con-
straint equations (47c) as follows:

t1/t2 = −1.9877395 ⇒ K := [1, 1.9877395, 0, 0]
and κ0 := 0;

(ω cosα)2 + (ω sinα)2 = ω2 := (0.99996626)2 ⇒
⇒ M := Diag([0, 0, 1, 1]) and α2

0 := (0.99996626)2.

The solution based on Algorithm 1 is shown in Tab. 6.
The results match those from the unconstrained case pre-
sented in chapter 5.2.1, thereby confirming that the con-
straints in the model have been fulfilled. The convergence
threshold was set to δ = 1 × 10−9, and the matrix S was
defined as S := 1 × 103 · I4. The solution converged in
five iterations.

Tab. 5: Solution for the 2-dimensional similarity transfor-
mation without constraints. Linear quantities are shown 
in units of meters.

Quantity Estimate/Calculation

ˆ : ˆξ1 1= t –69.726354

ˆ : ˆξ2 2= t 35.078215

ˆ : cosξ ω α3 = 0.98765502

ˆ : sinξ ω α4 = –0.15642921

ω̂ 0.99996626

Ω TSSR( ) 6.164035

σ̂ 0
2 (1.01357734)2

redundancy 6

y A E e− + −ˆ ˆξξ ξξ A y < 2 × 10–11

δ (convergence threshold) 1 × 10–10

S 1 × 10–2 · I4

Number of iterations 4
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Finally, the residuals are given by
�
ẽy ẼA

�
=

=




1.0204 0 0 −4.4030 5.3227
0.8997 0 0 −5.3227 −4.4030
0.3454 0 0 −1.8623 −0.5452

−0.1634 0 0 0.5452 −1.8623
−1.5805 0 0 7.1384 −6.2314
−0.9923 0 0 6.2314 7.1384

1.0398 0 0 −4.2610 6.8492
1.2010 0 0 −6.8492 −4.2610

−0.8251 0 0 3.3878 −5.3953
−0.9450 0 0 5.3953 3.3878




× 10−3m,

where the structure of the data matrix A is replicated in
the residual matrix ẼA.

It is worth noting that Algorithm 1 would not con-
verge when using a convergence threshold as small as
δ = 1 × 10−10 or when scaling the identity matrix by a
scalar as small as 1 × 102 in the assignment of S. More-
over, the model check �y − Aξ̂ + ẼAξ̂ − ẽy� turns out to
be relatively large when compared to those of other ex-
amples. The difference in the values of the model checks
from Tab. 5 and 6 are reflected in the corresponding resid-
uals, which differ at the level of 1 × 10−6 m for some
elements (well below the precision of the data).

It is conjectured that the relatively large value for the
model check and the sensitivity of the algorithm to the
convergence criterion are due, at least in part, to the con-
trived constraints of this experiment. We leave further de-
tails regarding the numerical properties of the new algo-
rithm for a future study.

5.2.3 A rigid transformation, weighted case for
singular Q1

In this final example, the similarity transformation is ef-
fectively transformed to a rigid transformation by use
of a quadratic constraint only in the model. The model
is modified by simply removing the linear constraint
Kξ = κ0 from Equation (47c). Algorithm 1 is modified
accordingly by omitting all terms associated with the lin-
ear constraint. Finally, the assignment α2

0 = 1 is made,
implying (ω cosα)2 + (ω sinα)2 = 1⇒ ω = 1, which
ensures a rigid transformation.

The identity matrix was used for S. The solution is pre-
sented in Tab. 7, and the residuals follow. Note the rela-
tively large increase in the TSSR value compared to the
unconstrained case of chapter 5.2.1. This confirms our ex-
pectation that the TSSR should increase when constraints
are added to the model, particularly when the residuals
prove to be so sensitive to a relatively small change of α2

0
in the quadratic constraint.

Tab. 7: Solution for the 2-dimensional similarity transfor-
mation with a quadratic constraint. Linear quantities are 
shown in units of meters.

Quantity Estimate/Calculation

ˆ : ˆξ1 1= t –69.738828

ˆ : ˆξ2 2= t 35.070627

ˆ : cos cosξ ω α α3 = =  0.98768834

ˆ : sin sinξ ω α α4 = =  –0.15643449

ω̂ 1

Ω TSSR( ) 15.719221

σ̂ 0
2 (1.498534)2

redundancy 7

y A E e− + −ˆ ˆξξ ξξ A y < 4 × 10–9

ˆ ˆξξ ξξT M 1

δ (convergence threshold) 1 × 10–10

S I4

Number of iterations 5

Tab. 6: Solution for the 2-dimensional similarity trans-
formation with linear and quadratic constraints. Linear 
quantities are shown in units of meters.

Quantity Estimate/Calculation

ˆ : ˆξ1 1= t –69.726354

ˆ : ˆξ2 2= t 35.078215

ˆ : cosξ ω α3 = 0.98765501

ˆ : sinξ ω α4 = –0.15642921

ˆ / ˆξ ξ1 2 –1.9877395

ω̂ 0.99996626

Ω TSSR( ) 6.164035

σ̂ 0
2 (0.877784)2

redundancy 8

y A E e− + −ˆ ˆξξ ξξ A y < 3 × 10–6

Kξ̂ξ 0

ˆ ˆξξ ξξT M (0.99996626)2

δ (convergence threshold) 1 × 10–9

S 1 × 103 · I4

Number of iterations 5
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Finally, the residuals are given by
�
ẽy ẼA

�
=

=




0.4653 0 0 −0.9131 9.3364
1.7878 0 0 −9.3364 −0.9131

−0.7649 0 0 3.5299 −2.5409
−0.3854 0 0 2.5409 3.5299
−2.1356 0 0 9.3052 −10.5701
−1.7694 0 0 10.5701 9.3052

2.1500 0 0 −10.4468 3.8332
0.4238 0 0 −3.8332 −10.4468
0.2852 0 0 −1.4753 −0.0585

−0.0568 0 0 0.0585 −1.4753




× 10−3m,

where the structure of the data matrix A is replicated in
the residual matrix ẼA.

6 Conclusions and outlook

In this contribution, we have presented a new algorithm
for solving the weighted TLS problem within an EIV-
Model having linear and quadratic constraints and (sig-
nificantly) singular dispersion matrices. The flexibility of
the algorithm has been demonstrated through a few nu-
merical examples.

The numerical experiments revealed that, in some
cases, the convergence properties of the algorithm were
affected by the choice of the matrix S required by the
algorithm. Equation (43c) reveals that S plays an appar-
ent balancing role with the matrix Q1. It would be inter-
esting to develop guidelines for the choice of S, perhaps
based on theoretical considerations or even on empirical
studies.
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