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Summary
Observations, which are missing in a set of data to be an-
alyzed in a linear model, can be replaced by fictitious val-
ues. A least squares adjustment is then applied to predict the
missing data. The adjustments are repeated until the residuals
of the predictions become negligibly small. This method goes
back to Healy and Westmacott (1956), and it is derived here
by the EM (expectation maximization) algorithm. It is applied
to the measurements of a laser scanner which gave wrong
results for data with high intensities of the reflected laser
beam. The faulty observations were introduced as missing ob-
servations and then predicted. If the linear model is capable
of predicting the missing data well, only approximations are
needed for the fictitious values.

Zusammenfassung
Beobachtungen, die in einer Menge von Daten fehlen, aber be-
nötigt werden, um sie in einem linearen Modell zu analysieren,
können durch f iktive Werte ersetzt werden. Eine Ausgleichung
nach der Methode der kleinsten Quadrate wird dann ange-
wendet, um die fehlenden Beobachtungen zu prädizieren. Die
Ausgleichungen werden wiederholt, bis die Residuen der Prä-
diktionen vernachlässigbar klein werden. Diese Methode geht
auf Healy and Westmacott (1956) zurück und wird hier durch
den EM (Erwartungswert-Maximierungs)-Algorithmus abge-
leitet. Er wird auf die Messungen eines Laserscanners ange-
wendet, die für Daten mit hohen Intensitäten des ref lektierten
Laserstrahls falsche Ergebnisse lieferten. Die fehlerhaften Da-
ten wurden als fehlende Beobachtungen eingeführt und dann
prädiziert. Falls das lineare Modell fähig ist, die fehlenden Da-
ten gut zu prädizieren, genügen Näherungen für die f iktiven
Werte.

Keywords: Missing observations, linear model, expectation
maximization algorithm, prediction, laser scanner

1 Introduction

When instruments measure automatically, observations
might be missing due to a failure of the electronics. Mov-
ing objects might obstruct the lines of sight of the in-
struments which result in missing or wrong observations.
Missing data might also be a consequence of laser scan-
ning as laser scanners work best for Lambertian surfaces
which diffusely reflect the laser beams, cf. Wagner (2010).
If the laser hits a strongly reflecting surface like metal,
the intensity of the reflection might get so high that the
instrument does not register an observation or the obser-
vation is erroneous. If some experiments for the analy-
sis of variance, for instance, in a two-way classification,

cf. Koch (1999, p. 202), do not produce results, the prob-
lem of missing data is also encountered.

If the observations together with the missing ones are
needed to be analyzed in a linear model by a computer, al-
ready Healy and Westmacott (1956) suggested to replace
the missing data by fictitious values and then estimate
the unknown parameters of the model by a least squares
adjustment. The missing observations are replaced by the
values predicted by the estimated parameters. The adjust-
ments are then repeated until the residuals for the predic-
tions become negligibly small. This is not only a convinc-
ing procedure, it can also be theoretically derived by the
EM (expectation maximization) algorithm.

Dempster et al. (1977) developed the EM algorithm in
its full generality after special cases had been derived be-
fore. In order to approximate the maximum likelihood
estimation, the EM algorithm is applied when observa-
tions are missing. They may be physically not available
as pointed out above, or the missing data can be imagi-
nary. For the latter case, the missing observations are in-
troduced to facilitate the maximum likelihood estimation.

The EM algorithm has been used to derive robust esti-
mations for linear models. Lange et al. (1989) started from
the t-distribution which concentrates for small degrees of
freedom more probability mass at the tails of its density
function than the normal distribution. Outliers can there-
fore be taken care of. Unknown weights for the observa-
tions were introduced as missing data with small weights
for the outliers so that the variance-inflation model was
used, cf. Beckman and Cook (1983). The degree of free-
dom for the t-distribution was considered as unknown
parameter to obtain an adaptive robust estimation. The
estimates follow by iterative reweighted least squares.

Aitkin and Wilson (1980) applied a mixture of two nor-
mally distributed components: the first one for the obser-
vations with the expected values defined by the linear
model, the second one for an outlier with its own expec-
tation. Thus, a heavy-tailed density was obtained based
on the mean-shift model, cf. Beckman and Cook (1983).
Missing data furnish the information as to which observa-
tion belongs to which component. The density functions
for the missing data give the weights which are small for
outliers. The estimates are found by iterative reweighted
least squares.

The L1-norm estimate, i.e. the least absolute deviations
estimate, of the parameters of a linear model is robust,
cf. Koch (1999, p. 262). It can be obtained by iterative
reweighted least squares as was shown by Schlossmacher
(1973). Phillips (2002) derived this estimate by the EM
algorithm. He also presented the EM algorithm for the
L1-norm estimate of the parameters of a nonlinear model.
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In geodesy, the EM algorithm seems first to have been
applied by Luxen and Brunn (2003). They solved a prob-
lem of classification where missing data supply the infor-
mation as to which observations belong to which class.
Peng (2009) introduced the linear model with unknown
variance components and used the EM algorithm for a
robust estimation based on a combination of the mean-
shift and variance-inflation model. Koch (2013a) gener-
alized the method of Aitkin and Wilson (1980) by intro-
ducing a mixture of any number of normally distributed
components, the first one for the observations, each of
the following ones for a suspected outlier. This general-
ized method showed in a Monte Carlo study superior per-
formance in comparison to the robust M-estimation by
Huber (1964) and to outlier tests (Koch 2013b). Kargoll
and Krasbutter (2013) generalized the method of Lange
et al. (1989) by introducing observational errors corre-
lated by an autoregressive process. Finally, Koch and Kar-
goll (2013) suggested to apply the EM algorithm based on
the variance-inflation model (Lange et al. 1989) first to
identify possible outliers and then the mean-shift model
(Koch 2013a) to get the outliers confirmed.

As mentioned above, the method of Healy and West-
macott (1956) for predicting missing observations can be
derived by the EM algorithm. This was pointed out by
Little and Rubin (2002, p. 237) as well as by McLach-
lan and Krishnan (2008, p. 49) who explained that for
applying the EM algorithm the conditional expectations
of the first two moments of the missing observations are
needed. This is not obvious so that the EM algorithm is
derived here. The paper is therefore organized as follows:
Section 2 presents the derivation. Section 3 gives an ex-
ample using the observations of a laser scanner. The con-
clusions follow in Section 4.

2 EM algorithm for predicting missing
observations

Let the r × 1 vector yo = |y1, . . . , yr|� contain the ob-
servations, the (n − r) × 1 vector ym = |yr+1, . . . , yn|�
the missing data and the n × 1 vector y = |y�

o, y�
m|� the

complete data. The linear model for the complete data is
then given by

Xβ = y + e with X = |X �
o, X �

m|�,
E(e) = 0, D(y) = σ2 I (1)

where X denotes the n × u matrix of coefficients with
full column rank, β the u × 1 vector of unknown para-
meters, e the n × 1 vector of errors, Xo the r × u co-
efficient matrix belonging to yo, Xm the (n − r) × u co-
efficient matrix belonging to ym and σ2 the unknown
variance factor. The special covariance matrix D(y) =
σ2 I and the normal distribution

y ∼ N(Xβ,σ2 I) (2)

are assumed for the complete data, which implies in-
dependent observations, cf. Koch (1999, p. 122). The
marginal distributions for yo and ym follow with (2) by

yo ∼ N(Xoβ,σ2 Ir), ym ∼ N(Xmβ,σ2 In−r). (3)

Let Θ be the vector of the unknown parameters of the
linear model, i.e.

Θ = |β�,σ2|�, (4)

and p(yo, ym|Θ) the likelihood function which is re-
garded as a function of Θ given yo and ym. To apply
the maximum likelihood estimation, it is simpler to max-
imize the natural logarithm of the likelihood function,
thus log p(yo, ym|Θ). The EM algorithm distinguishes
between the E (expectation) step and the M (maximiza-
tion) step. The E step determines the conditional expec-
tation, generally called Q(Θ, Θ(t)), of the log-likelihood
function with respect to the conditional distribution for
ym given yo and the current estimate Θ(t) of the un-
known parameters, cf. McLachlan and Krishnan (2008,
p. 18),

Q(Θ, Θ(t)) = E(log p(yo, ym|Θ)|yo, Θ(t))

=
∫

Ym

log p(yo, ym|Θ)p(ym|yo, Θ(t))dym (5)

where Ym denotes the domain of ym and p(ym|yo, Θ(t))
the conditional density for ym given yo and Θ(t). Thus,
the basic idea of the EM algorithm is to integrate out the
missing data ym and to replace it by the conditional ex-
pectation of ym. This will be shown in the following. The
M step of the EM algorithm determines the new estimate
Θ(t+1) by maximizing (5)

Θ(t+1) = arg max
Θ

Q(Θ, Θ(t)). (6)

The E and M steps are iteratively applied until (5) con-
verges (Wu 1983).

The likelihood function p(yo, ym|Θ) follows with (2)
and (4) by

p(yo, ym|Θ) = (2πσ2)−
n
2

exp[− 1
2σ2 ( yo

ym
− Xo

Xm
β)�( yo

ym
− Xo

Xm
β)]

= (2πσ2)−
n
2 exp[− 1

2σ2 (y�
o yo + y�

m ym − 2y�
oXoβ

−2y�
mXmβ + β�X �

oXoβ + β�X �
mXmβ)] (7)

and log p(yo, ym|Θ) by

log p(yo, ym|Θ) = −n
2

log(2π) − n
2

logσ2

− 1
2σ2 (y�

o yo − 2y�
oXoβ + β�X �

oXoβ)

− 1
2σ2 (y�

m ym − 2y�
mXmβ + β�X �

mXmβ). (8)

The conditional distribution for ym given yo is obtained
with (2) and (3) by, cf. Koch (1999, p. 121),

ym|yo ∼ N(Xmβ,σ2 In−r) (9)
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In geodesy, the EM algorithm seems first to have been
applied by Luxen and Brunn (2003). They solved a prob-
lem of classification where missing data supply the infor-
mation as to which observations belong to which class.
Peng (2009) introduced the linear model with unknown
variance components and used the EM algorithm for a
robust estimation based on a combination of the mean-
shift and variance-inflation model. Koch (2013a) gener-
alized the method of Aitkin and Wilson (1980) by intro-
ducing a mixture of any number of normally distributed
components, the first one for the observations, each of
the following ones for a suspected outlier. This general-
ized method showed in a Monte Carlo study superior per-
formance in comparison to the robust M-estimation by
Huber (1964) and to outlier tests (Koch 2013b). Kargoll
and Krasbutter (2013) generalized the method of Lange
et al. (1989) by introducing observational errors corre-
lated by an autoregressive process. Finally, Koch and Kar-
goll (2013) suggested to apply the EM algorithm based on
the variance-inflation model (Lange et al. 1989) first to
identify possible outliers and then the mean-shift model
(Koch 2013a) to get the outliers confirmed.

As mentioned above, the method of Healy and West-
macott (1956) for predicting missing observations can be
derived by the EM algorithm. This was pointed out by
Little and Rubin (2002, p. 237) as well as by McLach-
lan and Krishnan (2008, p. 49) who explained that for
applying the EM algorithm the conditional expectations
of the first two moments of the missing observations are
needed. This is not obvious so that the EM algorithm is
derived here. The paper is therefore organized as follows:
Section 2 presents the derivation. Section 3 gives an ex-
ample using the observations of a laser scanner. The con-
clusions follow in Section 4.

2 EM algorithm for predicting missing
observations

Let the r × 1 vector yo = |y1, . . . , yr|� contain the ob-
servations, the (n − r) × 1 vector ym = |yr+1, . . . , yn|�
the missing data and the n × 1 vector y = |y�

o, y�
m|� the

complete data. The linear model for the complete data is
then given by

Xβ = y + e with X = |X �
o, X �

m|�,
E(e) = 0, D(y) = σ2 I (1)

where X denotes the n × u matrix of coefficients with
full column rank, β the u × 1 vector of unknown para-
meters, e the n × 1 vector of errors, Xo the r × u co-
efficient matrix belonging to yo, Xm the (n − r) × u co-
efficient matrix belonging to ym and σ2 the unknown
variance factor. The special covariance matrix D(y) =
σ2 I and the normal distribution

y ∼ N(Xβ,σ2 I) (2)

are assumed for the complete data, which implies in-
dependent observations, cf. Koch (1999, p. 122). The
marginal distributions for yo and ym follow with (2) by

yo ∼ N(Xoβ,σ2 Ir), ym ∼ N(Xmβ,σ2 In−r). (3)

Let Θ be the vector of the unknown parameters of the
linear model, i.e.

Θ = |β�,σ2|�, (4)

and p(yo, ym|Θ) the likelihood function which is re-
garded as a function of Θ given yo and ym. To apply
the maximum likelihood estimation, it is simpler to max-
imize the natural logarithm of the likelihood function,
thus log p(yo, ym|Θ). The EM algorithm distinguishes
between the E (expectation) step and the M (maximiza-
tion) step. The E step determines the conditional expec-
tation, generally called Q(Θ, Θ(t)), of the log-likelihood
function with respect to the conditional distribution for
ym given yo and the current estimate Θ(t) of the un-
known parameters, cf. McLachlan and Krishnan (2008,
p. 18),

Q(Θ, Θ(t)) = E(log p(yo, ym|Θ)|yo, Θ(t))

=
∫

Ym

log p(yo, ym|Θ)p(ym|yo, Θ(t))dym (5)

where Ym denotes the domain of ym and p(ym|yo, Θ(t))
the conditional density for ym given yo and Θ(t). Thus,
the basic idea of the EM algorithm is to integrate out the
missing data ym and to replace it by the conditional ex-
pectation of ym. This will be shown in the following. The
M step of the EM algorithm determines the new estimate
Θ(t+1) by maximizing (5)

Θ(t+1) = arg max
Θ

Q(Θ, Θ(t)). (6)

The E and M steps are iteratively applied until (5) con-
verges (Wu 1983).

The likelihood function p(yo, ym|Θ) follows with (2)
and (4) by

p(yo, ym|Θ) = (2πσ2)−
n
2

exp[− 1
2σ2 ( yo

ym
− Xo

Xm
β)�( yo

ym
− Xo

Xm
β)]

= (2πσ2)−
n
2 exp[− 1

2σ2 (y�
o yo + y�

m ym − 2y�
oXoβ

−2y�
mXmβ + β�X �

oXoβ + β�X �
mXmβ)] (7)

and log p(yo, ym|Θ) by

log p(yo, ym|Θ) = −n
2

log(2π) − n
2

logσ2

− 1
2σ2 (y�

o yo − 2y�
oXoβ + β�X �

oXoβ)

− 1
2σ2 (y�

m ym − 2y�
mXmβ + β�X �

mXmβ). (8)

The conditional distribution for ym given yo is obtained
with (2) and (3) by, cf. Koch (1999, p. 121),

ym|yo ∼ N(Xmβ,σ2 In−r) (9)
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and Q(Θ, Θ(t)) in (5) with (8) by

Q(Θ, Θ(t)) = [−n
2

log(2π) − n
2

logσ2

− 1
2σ2 (y�

o yo − 2y�
oXoβ + β�X �

oXoβ)]
∫

Ym

p(ym|yo, Θ(t))dym

− 1
2σ2

∫

Ym

(y�
m ym − 2y�

mXmβ + β�X �
mXmβ)

p(ym|yo, Θ(t))dym

= −n
2

log(2π) − n
2

logσ2 − 1
2σ2 (y�

o yo

−2y�
oXoβ + β�X �

oXoβ + β�X �
mXmβ)

+
1

σ2 β�X �
m

∫

Ym

ym p(ym|yo, Θ(t))dym

− 1
2σ2

∫

Ym

y�
m ym p(ym|yo, Θ(t))dym. (10)

The last two integrals in (10) represent the conditional ex-
pectations of the first and second moments of the missing
observations ym, which were already mentioned in Sec-
tion 1.

We obtain with (9), with ym = (yi), Xm = (x�i) for
i ∈ {r + 1, . . . , n} and with

p(ym|yo) =
n

∏
i=r+1

p(yi|yo) (11)

the conditional expectation of the first moment of the
component yi of ym by

E(yi|yo) =
∫

Yr+1

. . .
∫

Yn

yi p(yr+1|yo) . . . p(yn|yo)

dyr+1 . . . dyn =
∫

Yi

yi p(yi|yo)dyi = x�iβ (12)

and of the second moment, cf. Koch (1999, p. 119),

E(y�
m ym|yo) =

∫

Yr+1

. . .
∫

Yn

(y2
r+1 + . . . + y2

n)

p(yr+1|yo) . . . p(yn|yo)dyr+1 . . . dyn

=
n

∑
i=r+1

∫

Yi

y2
i p(yi|yo)dyi =

n

∑
i=r+1

[(x�iβ)2 +σ2]

= β�X �
mXmβ + (n − r)σ2 (13)

where Yr+1 to Yn denote the domains of yr+1 to yn. By
substituting (12) and (13) in (10) we get

Q(Θ, Θ(t)) = −n
2

log(2π) − n
2

logσ2 − 1
2σ2 (y�

o yo

−2y�
oXoβ + β�X �

oXoβ + β�X �
mXmβ)

+
1

σ2 β�X �
mXmβ(t) − 1

2σ2 (β(t) �X �
mXmβ(t)

+(n − r)σ2(t)
). (14)

The M step according to (6) leads to

∂
∂β

Q(Θ, Θ(t)) =
1

σ2 (X �
o yo − X �

oXoβ

−X �
mXmβ + X �

mXmβ(t)) = 0 (15)

and to the normal equations for the estimate β(t+1)

(X �
oXo + X �

mXm)β(t+1) = X �
o yo + X �

mXmβ(t). (16)

The missing observations ym are therefore replaced by
their predictions

y(t)
m = Xmβ(t). (17)

Furthermore, we find

∂
∂σ2 Q(Θ, Θ(t)) = − n

2σ2 +
1

2(σ2)2 (y�
o yo

−2y�
oXoβ + β�X �

oXoβ + β�X �
mXmβ

+β(t) �X �
mXmβ(t) + (n − r)σ2(t)

)

− 1
(σ2)2 β�X �

mXmβ(t) = 0 (18)

and the estimate of σ2(t+1) by

σ2(t+1)
=

1
n

[(yo − Xoβ
(t))�(yo − Xoβ

(t))

+(n − r)σ2(t)
]. (19)

At the point of convergence of the EM algorithm, it holds
β(t+1) = β(t) and σ2(t+1) = σ2(t) so that the estimate
σ2(t+1) follows with

σ2(t+1)
=

1
r
(yo − Xoβ

(t+1))�(yo − Xoβ
(t+1)). (20)

Looking at the observation equations for the missing ob-
servations ym, we get

Xmβ(t+1) = y(t)
m + e(t)

m . (21)

Thus, we obtain with (17) at the point of convergence

e(t+1)
m = 0. (22)

At convergence, Q(Θ, Θ(t+1)) follows from (14) after
neglecting the first term, which is constant, and from (20)
by

Q(Θ, Θ(t+1)) = −n
2

logσ2(t+1) − 1

2σ2(t+1)

(yo − Xoβ
(t+1))�(yo − Xoβ

(t+1))− (n − r)
2

= −n
2
(logσ2(t+1)

+ 1). (23)

The EM algorithm for determining missing observations
therefore starts with choosing fictitious values. The es-
timates (16) of the unknown parameters β are then it-
eratively applied by replacing the missing observations
by their predictions Xmβ(t) from (17). The iterations are
stopped either if the residuals in (22) are negligibly small
or the conditional expectation (23) has reached a max-
imum. The estimate of the variance factor then follows
from (20).

If a nonlinear model is given and the unknown para-
meters are only approximately known, one has to iterate
for the linearization. With each iteration, the missing data
should be predicted to avoid that the linearization is dis-
torted if the prediction is applied after the linearization.

Dependent observations can be decorrelated by the
Cholesky factorization of the covariance matrix, cf. Koch
(1999, p. 154). However, this will spread the fictitious val-
ues for the missing data over the observed data due to the
correlations. If nevertheless a decorrelation is needed, it
has to be computed together with the prediction of the
missing data for each iteration of the linearization.

3 Numerical example

The coordinates xi , yi , zi with i ∈ {1, . . . , n} and the in-
tensities of the reflected laser beam of a grid of n = 5 × 5
points on a plane, vertically standing metal sheet were
measured by the laser scanner HDS 3000. The coordinates
refer to the local coordinate system of the instrument with
the x-axis lying horizontally, the y-axis coinciding with
the center of the lines of sight and the z-axis pointing to
the zenith. The scans start at the lower left corner of the
grid from negative to positive z-values with increasing
x-values and end at the upper right corner. The distances
between the points on the metal sheet are about 11 cm,
the shortest y-coordinate is 539 cm, and the intensities
vary between 179 and 765. Some points on the metal
sheet are hit almost perpendicularly by the laser beam.

To determine the standard deviations of the observed
coordinates, the grid of points was measured in addition
with nw = 25 repetitions. This takes only a short time
so that time variable systematic effects can be excluded
(Koch 2010). With the mean x̄i of the repeatedly measured
coordinates xi j for i ∈ {1, . . . , n}, j ∈ {1, . . . , nw} from

x̄i =
1

nw

nw

∑
j=1

xi j, (24)

we obtain the variance σ2
xi

of xi by

σ2
xi

=
1

nw − 1

nw

∑
j=1

(xi j − x̄i)2 (25)

and accordingly σ2
yi

and σ2
zi

and the standard deviations
σxi , σyi , σzi by taking the square roots. The mean values
σ̄xi , σ̄yi and σ̄zi of the 25 standard deviations result with

σ̄xi = 0.05 cm, σ̄yi = 0.21 cm, σ̄zi = 0.06 cm . (26)

The standard deviations σxi andσzi are much smaller than
σyi so that xi and zi can be considered fixed when fitting
a plane to the measurements. The observation equations
are

β0 + xiβ1 + ziβ2 = yi + ei for i ∈ {1, . . . , n} (27)

where β0, β1, β2 are the unknown parameters of the
plane and ei the errors of yi. As mentioned, the obser-
vations yi are assumed as independent but have different
variances. By multiplying each observation equation (27)
by 1/

√
σ2

yi
, the linear model (1) is obtained, cf. Koch

(1999, p. 155). The unknown parameters of the plane are
estimated by a least squares adjustment. The results for
the residuals êi with maximum absolute errors ordered by
decreasing values are shown in Tab. 1 for five points. The
numbers of the points follow the sequence of the scans.
The standard deviations σyi from (25) and the intensities
of the reflected laser beam are also given in Tab. 1.

Looking at the residuals êi and the standard deviations
σyi of Tab. 1 for points 13 and 18 with high intensities,
it becomes obvious that the measured coordinates yi are
wrong. The residual for point 3 which also has a high in-
tensity is acceptable, it lies within the interval 3σyi . The
measurements yi for points 13 and 18 were therefore as-
sumed as missing, and the EM algorithm was applied to
iteratively predict the missing observations according to
(16) and (17).

To check how the computations depend on the ficti-
tious values for the observations, three results have been
computed and shown in Tab. 2. The faulty measurements
were used as fictitious values for result 1. The mean of
the measurements yi of points 12 and 14 for point 13 and
of points 17 and 19 for point 18 were introduced as fic-
titious values for result 2. Finally, 100 cm were added to
the mean values to obtain result 3. It was iterated, until
the absolute values of the residuals in (22) were smaller
than 0.004 cm. Tab. 2 shows the predicted observations
Xmβ(t) for point 13 and 18 from (17), the square root
of the unbiased estimate of the variance factor from (20)
and the number of iterations. The three results for the
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If a nonlinear model is given and the unknown para-
meters are only approximately known, one has to iterate
for the linearization. With each iteration, the missing data
should be predicted to avoid that the linearization is dis-
torted if the prediction is applied after the linearization.

Dependent observations can be decorrelated by the
Cholesky factorization of the covariance matrix, cf. Koch
(1999, p. 154). However, this will spread the fictitious val-
ues for the missing data over the observed data due to the
correlations. If nevertheless a decorrelation is needed, it
has to be computed together with the prediction of the
missing data for each iteration of the linearization.

3 Numerical example

The coordinates xi , yi , zi with i ∈ {1, . . . , n} and the in-
tensities of the reflected laser beam of a grid of n = 5 × 5
points on a plane, vertically standing metal sheet were
measured by the laser scanner HDS 3000. The coordinates
refer to the local coordinate system of the instrument with
the x-axis lying horizontally, the y-axis coinciding with
the center of the lines of sight and the z-axis pointing to
the zenith. The scans start at the lower left corner of the
grid from negative to positive z-values with increasing
x-values and end at the upper right corner. The distances
between the points on the metal sheet are about 11 cm,
the shortest y-coordinate is 539 cm, and the intensities
vary between 179 and 765. Some points on the metal
sheet are hit almost perpendicularly by the laser beam.

To determine the standard deviations of the observed
coordinates, the grid of points was measured in addition
with nw = 25 repetitions. This takes only a short time
so that time variable systematic effects can be excluded
(Koch 2010). With the mean x̄i of the repeatedly measured
coordinates xi j for i ∈ {1, . . . , n}, j ∈ {1, . . . , nw} from

x̄i =
1

nw

nw

∑
j=1

xi j, (24)

we obtain the variance σ2
xi

of xi by

σ2
xi

=
1

nw − 1

nw

∑
j=1

(xi j − x̄i)2 (25)

and accordingly σ2
yi

and σ2
zi

and the standard deviations
σxi , σyi , σzi by taking the square roots. The mean values
σ̄xi , σ̄yi and σ̄zi of the 25 standard deviations result with

σ̄xi = 0.05 cm, σ̄yi = 0.21 cm, σ̄zi = 0.06 cm . (26)

The standard deviations σxi andσzi are much smaller than
σyi so that xi and zi can be considered fixed when fitting
a plane to the measurements. The observation equations
are

β0 + xiβ1 + ziβ2 = yi + ei for i ∈ {1, . . . , n} (27)

where β0, β1, β2 are the unknown parameters of the
plane and ei the errors of yi. As mentioned, the obser-
vations yi are assumed as independent but have different
variances. By multiplying each observation equation (27)
by 1/

√
σ2

yi
, the linear model (1) is obtained, cf. Koch

(1999, p. 155). The unknown parameters of the plane are
estimated by a least squares adjustment. The results for
the residuals êi with maximum absolute errors ordered by
decreasing values are shown in Tab. 1 for five points. The
numbers of the points follow the sequence of the scans.
The standard deviations σyi from (25) and the intensities
of the reflected laser beam are also given in Tab. 1.

Looking at the residuals êi and the standard deviations
σyi of Tab. 1 for points 13 and 18 with high intensities,
it becomes obvious that the measured coordinates yi are
wrong. The residual for point 3 which also has a high in-
tensity is acceptable, it lies within the interval 3σyi . The
measurements yi for points 13 and 18 were therefore as-
sumed as missing, and the EM algorithm was applied to
iteratively predict the missing observations according to
(16) and (17).

To check how the computations depend on the ficti-
tious values for the observations, three results have been
computed and shown in Tab. 2. The faulty measurements
were used as fictitious values for result 1. The mean of
the measurements yi of points 12 and 14 for point 13 and
of points 17 and 19 for point 18 were introduced as fic-
titious values for result 2. Finally, 100 cm were added to
the mean values to obtain result 3. It was iterated, until
the absolute values of the residuals in (22) were smaller
than 0.004 cm. Tab. 2 shows the predicted observations
Xmβ(t) for point 13 and 18 from (17), the square root
of the unbiased estimate of the variance factor from (20)
and the number of iterations. The three results for the

Tab. 1: Residuals êi  ordered by decreasing absolute values, 
standard deviations σ yi

 and intensities

Point êi  (cm) σ yi
 (cm) Intensities

13  2.37 0.22 757

18  1.56 0.21 763

3 –0.67 0.27 613

9 –0.44 0.22 408

5 –0.37 0.21 276

Tab. 2: Predicted observations for points 13 and 18, 
square root of estimated variance factor and number of 
iterations

Result point 13 point 18 sqrt. est. Iterations
predict. obs. (cm) var. fact.

1 541.16 540.95 1.1017 3

2 541.16 540.95 1.1017 3

3 541.16 540.95 1.1017 5
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prediction of point 13 and point 18 agree. Approximate
fictitious values can therefore be chosen for the missing
data.

The transformation into the model (1) has been accom-
plished by the estimates (25) of the variances σ2

yi
. If no

model errors exist, the estimated variance factor should
be close to one. The results of 1.1017 in Tab. 2 indicate
that the surface of the metal sheet can be represented by
a plane and that no outliers exist in the measured and
predicted observations.

The sum of the adjusted distances from the instru-
ment to the grid of points is sensitive to errors in the
adjusted y-coordinates of the points. The expected value
and the confidence interval for the sum were therefore
determined from Monte Carlo methods, cf. Koch (2010).
100 000 normally distributed random variates for the
y-coordinates with the variances σ2

yi
from (25) were gen-

erated., cf. Koch (2007, p. 197). The expectation of
13539.37 cm for the sum, the lower limit of the con-
fidence interval of 13537.25 cm and the upper limit of
13541.49 cm were obtained for all three results of Tab. 2.
This confirms that approximate values can be chosen as
fictitious ones for the missing observations.

4 Conclusions

The method of Healy and Westmacott (1956) for predict-
ing missing observations to be evaluated in a linear model
is a convincing procedure, especially because it can be de-
rived by the EM algorithm as was shown here. The mea-
surements of a laser scanner, which were analyzed here,
gave wrong results in case of high intensities of the re-
flected laser beam. The faulty measurements were intro-
duced as missing observations into the EM algorithm. The
linear model was defined by a plane, which was fitted to
the y-coordinates measured by the laser scanner. It pre-
dicted the missing observations very well. This was found
out by assuming different fictitious values for the missing
data and by applying a Monte Carlo method to compute
the expectation and the confidence interval of the sum
of the adjusted distances from the instrument to the ob-
served points on the plane. It is therefore sufficient to de-
termine the fictitious values for the missing observations
only approximately.

Some types of laser scanners do not register any mea-
surements if the intensity of the reflected laser beam
surpasses a certain limit. For such cases, the x- and z-
coordinates have to be interpolated into the measured
coordinates of the grid of points. Fictitious values are
then chosen for the y-coordinates which are introduced
as missing data for the EM algorithm.
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