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Summary
A new technique to identify periodicities in two-dimensional 
movements has been investigated. As a typical example, polar 
motion is approximated by complex-valued series. The de-
tected frequencies do not have to show integer ratios among 
themselves as in Fourier series; they can assume arbitrary real 
values. The fitting of the parameters of frequency series to the 
polar motion data results from a least-squares adjustment in 
which not only the amplitudes, but the frequencies as well 
are considered as unknowns. The approximate values for the 
frequencies in this severely nonlinear adjustment problem are 
obtained by a heuristic procedure. In doing so there is no 
need for prior information regarding individual possibly oc- 
curring frequencies. The methodology is illustrated by the 
Earth Orientation Parameter series C01 (EOP‑C01) of the Inter
national Earth rotation and Reference system Service (IERS).  
The determined annual and Chandler frequencies lie inside 
the intervals determined by other authors using other tech-
niques. However, since the frequencies determined by the new 
technique are not restricted to some set of Fourier-like fre-
quencies, an interpretation of them as existing in the reality 
is less artificial. Therefore, the presented technique represents 
an expansion of the up to now available inventory of meth-
ods and can be successfully applied for the determination of  
frequencies contained in two-dimensional data. The advan-
tages of the proposed procedure are that it can be easily 
generalized for the analysis of any time series of arbitrary 
dimensions and that even the data gaps within the analyzed 
time series would generate no theoretical or numerical dif-
ficulties.

Zusammenfassung
Es wurde eine neue Technik zur Identifizierung von Periodizitä-
ten in zwei-dimensionalen Bewegungen entwickelt. Ein typi-
sches Beispiel für derartige Bewegungen ist die Polbewegung, 
die durch eine komplexwertige Zeitreihe dargestellt werden 
kann. In diesem Fall müssen die Frequenzen keine ganz
zahligen Verhältnisse zueinander aufweisen wie im Falle der 
Fourier-Reihen, sondern können beliebige Werte annehmen. 
Die Bestimmung der Parameter der komplexwertigen Fre-
quenzreihe erfolgt mittels Ausgleichung, wobei nicht nur die 
Amplituden, sondern auch die Frequenzen als Unbekannte be-
trachtet werden. Die für diese nichtlineare Ausgleichung not-
wendigen Näherungswerte für die Frequenzen werden anhand 
eines heuristischen Verfahrens bereitgestellt. Aufgrund dieser 
Vorgehensweise besteht keine Notwendigkeit, Vorinformatio
nen über eventuell vorhandene Frequenzen zu besitzen. Die 
Methodik des entwickelten Verfahrens wird anhand der Erd- 
orientierungs-Parameter Serie C01 (EOP‑C01) des International 
Earth rotation and Reference system Service (IERS) illustriert. 

Dabei zeigt sich, dass die mittels des heuristischen Verfahrens 
ermittelten jährlichen Frequenzen und Chandler-Frequenzen 
innerhalb der Intervalle liegen, die von anderen Forschern un-
ter Verwendung anderer Methoden bestimmt wurden. Aller-
dings ist eine Interpretation der heuristisch ermittelten Fre-
quenzen in Bezug auf ihr Vorhandensein in der Realität mehr 
gerechtfertigt als bei der Verwendung einer eingeschränkten 
Anzahl von Fourier-Frequenzen. Deshalb kann die präsentierte 
Technik als Erweiterung aller derzeitigen Methoden betrachtet 
werden, mit der erfolgreich die Bestimmung von Frequenzen 
aus zweidimensionalen Daten möglich ist. Der Vorteil der vor-
gestellten Technik besteht darin, dass eine Generalisierung für 
die Analyse von Zeitreihen beliebiger Dimensionen möglich ist 
sowie auch das Vorhandensein von Datenlücken keine theore-
tischen wie numerischen Probleme mit sich bringt.

1	 Introduction

The precise monitoring of polar motion and the under-
standing of the characteristics and time evolution of its 
periodic oscillations are important for defining the terres-
trial reference frame and for geophysical studies (Höpfner 
2003a). The study of earth’s rotation is related to dynamic 
interactions between the solid earth, atmosphere, oceans 
and other geophysical fluids as well.

The complex motion of the deformable earth’s rota-
tional axis with respect to the crust of the earth exhibits 
secular, periodic and irregular variations due to several 
geophysical and meteorological causes. Some of them are 
still unexplained (Poma et al. 1997). One of the big chal-
lenges is the physical explanation of the big change of 
Chandler Wobble in the 1930ties (cf. Plag et al. 2005). A 
major recent progress in excitation studies of free wobble 
has been attained using the model proposed by Jeffreys 
(1940). Probably the best summary of the state of the art 
is given by Gross (2007).

However, there are still differing opinions regarding 
the Chandler frequency. Several authors found two or 
more close Chandler frequencies (e. g., Chandler 1901a, 
Gaposchkin 1972, Pan 2007) in the results of spectral 
analysis. Some authors believe that there is only a single  
free frequency changing with time (e. g., Carter 1981, 
Vondrák 1988, Pejović 1990, Höpfner 2003b) and many 
authors (probably the majority) argue that there is no evi-
dence for temporal variation in the Chandler frequency 
(e. g., Wilson and Vicente 1981, Okubo 1982, Vicente 
and Wilson 1997). Already Chandler (1901a) has shown 
that the multiple-peaks model can be transformed into 
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a model with a single but variable frequency. Guo et al. 
(2005) show that two frequencies can be represented by 
a single frequency with a modulated amplitude and that 
it is not possible to distinguish both models based solely 
on mathematical arguments. Jochmann (2003) states that 
it cannot be resolved by analysis of time series whether 
the Chandler period is variable. Furthermore, he shows 
that it is impossible to differentiate phase from frequency 
modulation. An additional difficulty is that the Chandler 
wobble is probably not strictly harmonic, or even pe
riodic. Hence, Jeffreys (1940) warns that the “analysis of 
an apparent free vibration as if it was strictly periodic 
is hazardous; its maintenance in spite of dissipation in-
volves forces out of phase with the displacement, and 
these are not necessarily even periodic”.

All these difficulties do not justify ignoring the re-
sults from the analysis of observed data as long as there 
is no plausible physical explanation at hand. A possible  
approach is to determine the frequencies contained in 
the measured time series applying the multiple-peaks 
model. In next step the results can be transformed into a 
model with a single, but variable Chandler frequency and 
the significance of a variability can be investigated. For 
example Jochmann (2003) presented such an investiga-
tion, which resulted in the conclusion that the frequency 
of the Chandler wobble is in fact variable. However, due 
to the order of magnitude of these variations Chandler 
wobble can be treated as invariable for the length of time 
series presently available.

This article does not pretend to decide which of the 
models (multiple-peaks, single invariant or variable 
Chandler frequency) is physically better interpretable. 
It presents a new method for reliable determination of 
frequencies in two-dimensional time series within the 
multiple-peaks model. The method is illustrated by the 
example of the detection of secular polar motion and the 
most prominent periodicities from the Earth Orientation 
Parameter series C01 (EOP‑C01) of the International Earth 
rotation and Reference system Service (IERS).

Usually some sort of Fourier analysis is applied for the 
evaluation of polar motion (and other two-dimensional) 
time series, where all frequencies employed to describe 
changes of the pole position are integer multiples of only 
one basic frequency. This basic frequency is most fre-
quently chosen depending on the time interval covered 
by the time series, which has no physical justification. 
A better modeling of polar motion series tested for the 
long-periodic part can be found in Gross and Vondrák 
(1999). In this reference, the amplitude spectrum of po-
lar motion series was not obtained by Fourier analysis, 
but was instead achieved by simultaneously fitting mean, 
trend and periodic terms to the observations. The fitting 
was repeated several times and the period of periodic 
term was systematically varied at intervals of 0.01 years 
between a period of 6 years and a period equal to the 

length of series. The only shortcoming of such an ap-
proach is the enormous computational effort needed to 
perform the search at very small steps. This seems to be 
the main reason for the cited authors to apply this proce-
dure only to the long-periodic part.

In this paper, a heuristic procedure is used for ran-
dom search for frequencies within a chosen interval. In 
contrast to the systematic search applied in Gross and 
Vondrák (1999) it is possible to find arbitrary frequencies 
without prior knowledge about their existence. Further-
more, one needs significantly fewer parameters for the 
modeling of changes (e. g., of the pole position) described 
by the considered two-dimensional time series than in a 
standard Fourier-like approach.

The present paper focuses on the methodological as-
pect of the problem. The method is illustrated using the 
available IERS EOP‑series C01. The same methodology 
can be applied in order to find periodicities in any other 
two-dimensional movement and can be straightforwardly 
generalized to arbitrary dimensions.

2	 Mathematical Model for a Two-dimensional 
Movement

The polar motion of celestial intermediate pole (CIP) can 
be considered as an example of a two-dimensional move-
ment. This motion is usually approximated by a complex-
valued series (Munk and MacDonald 1960, Jochmann 
1986, Jochmann and Felsmann 2001):
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A(k+) and B(k+) are the amplitudes of the prograde compo-
nents of the polar motion, A(k–) and B(k–) the amplitudes 
of the retrograde components of the polar motion. The 
choice of kmax, apart from the obvious restrictions due 
to finite number of data points, should depend on the 
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desired quality of approximation of the time series, which 
is related with the accuracy of data. The frequencies Ωk 
do not have to show integer ratios among themselves as 
in the case of Fourier series. They can obtain arbitrary 
real values, this is the essential difference between the 
considered expression (1) and the analogous expressions 
for Fourier series.

Each periodic part of the complex-valued series is 
equivalent to an elliptic component of the motion. This 
means that the pole goes along a deformed “ellipse” 
which is composed of many ellipses with various sizes 
and orientations of the semi-axes. The semi-axes can be 
determined from the following expressions:

( ) ( ) ( ) ( )
2 2 2 2

k k k k ka A B A B+ + − −= + + +  ,	 (4)

( ) ( ) ( ) ( )
2 2 2 2

k k k k kb A B A B+ + − −= + − +  .	 (5)

The numerical eccentricity ε is a dimensionless measure 
for the deviation of the ellipse from the circle (Höpfner 
2003a):

2 2
k k

k
k

a b
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−
=ε  .	 (6)

If ε is near to zero, the ellipse does not differ significantly 
from a circle; if ε is between zero and one, then it can be 
regarded as a real ellipse.

The two-dimensional movement and polar motion as 
an example for such a movement were chosen for this 
study in order to illustrate the proposed solution tech-
nique. The same procedure is applicable to any periodic 
phenomenon of arbitrary dimension, for instance to a pe-
riodic movement in three dimensions. It is only necessary 
to take a traditional Fourier-like mathematical model of 
the considered phenomenon and to replace the prescribed 
frequencies with arbitrary ones which become additional 
unknowns. The procedure described in the following sec-
tions can be directly adapted to the new problem. From 
the following description, it follows that no assumption 
has to be made on the distribution of data, it might be ar-
bitrary. Examples of successful application of the method 
to one-dimensional time series with data gaps can be 
found in Mautz (2001, 2002).

3	 Definition of the Problem

The problem which will be solved is the following: Given 
are the measured quantities x + ex and y + ey, where ex and 
ey represent noise, the goal is to determine unknown 
amplitudes A(k+), B(k+), A(k–), B(k–) and unknown frequen-

cies Ωk. By minimizing the sum of squared residuals a 
nonlinear least-squares adjustment for the determina-
tion of the unknowns is obtained. All observations can 
have either the same or different accuracies, which can 
be accounted for by using appropriate weighting factors. 
Solving the least-squares problem by local optimization 
techniques requires accurate approximate values for the 
frequencies, since the objective function has a lot of local 
minima. These approximate values are not known. How-
ever, bounds for the frequencies are available in case of 
equally spaced data (Priestley 1981):
n	 lowest possible frequency: Fmin = 1/p,
n	 highest possible frequency: Fmax = 1/(2∆t).

The lowest possible frequency can be determined from 
the time span p of the considered time series based on the 
reasoning that the data interval should contain at least 
one full period in order to determine the frequency reli-
ably. The highest possible frequency (Nyquist frequency) 
follows from the sampling rate ∆t. Consequently, an in-
terval can be specified which must contain all frequencies 
which can be determined using the considered data. By a 
heuristic procedure (which combines a random search for 
acceptable approximate values with a numerical solution 
of nonlinear least-squares adjustment) it is possible to 
find these frequencies which appropriately describe the 
changes of the considered functions, i. e., of pole coor-
dinates.

In case of unevenly spaced data or data gaps the sam-
pling rate is variable and the cited bounds cannot hold 
strictly; however, they can be used as guidelines.

4	 Description of the Heuristic Procedure

In Fig. 1 the heuristic procedure is presented, see also 
Kaschenz (2003). This procedure can be divided into 
eight steps. First it is necessary to choose an arbitrary 
frequency Ωk from the interval [Fmin : Fmax], for example 
by using a random number generator. Secondly, with the 
chosen frequency it is possible to determine the ampli-
tudes by linear least-squares adjustment as well as the 
corresponding residuals vx and vy (step 3). These residuals 
are the differences between the reduced (xred, yred) and the 
calculated (xcalc, ycalc) pole coordinates:

x red calcv x x= −  ,

y red calcv y y= −  .

The calculated coordinates are determined from equa-
tions (2) and (3) with kmax = 1 using the chosen fre-
quency and the corresponding amplitudes. At the begin-
ning of the procedure the reduced pole coordinates are 
equal to the observed pole coordinates. In the fourth step 
all parameters are stored as preliminary solution. Now, 
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steps 1 till 3 are repeated several times and the obtained 
parameters are saved only in the case that the new sum 
of squared residuals is smaller than the last one memo-
rized. The choice of the number of repetitions is not an 
easy question. At present, the criterion consisting of a 
mixture of maximum allowed number of repetitions (or-
der of magnitude 106), number of “successes” (cases in 
which the new parameters are better than the old ones) 
and the magnitude of improvement in case of success 
seems to be the best compromise. Consequently, the saved 
new parameters describe the pole coordinates better than 
the parameters which have been stored before. After the 
repeated improvement of the unknown parameters, there 
is a good approximate value for a new significant fre-
quency. Therefore, the determination of all up to then 
evaluated frequencies and the corresponding amplitudes 
within a common nonlinear least-squares adjustment is 
feasible. In the seventh step the observed pole coordinates 
are reduced by terms with periodicities determined up to 
then using equations (2) and (3) with kmax equal to the 
number of already evaluated frequencies. Within the re-
duced pole coordinates the search for the next strongest 
frequency is accomplished by going back to the first step. 

The determination of frequencies stops if for example the 
(weighted) sum of squared residuals is acceptable. If the 
accuracy of the observed pole coordinates is known, an 
acceptable sum of squared residuals as a stop criterion 
can be determined from this information, since each 
value of this sum corresponds to some value of the mean 
approximation error resulting from least-squares adjust-
ment. An alternative could be to postulate a significance 
level for amplitudes based on the noise level. Then, the 
procedure is either stopped or a prescribed number of 
frequencies is determined, of which only the significant 
ones are considered. Other criteria are imaginable as well, 
depending on the objective of investigation, which could 
be to approximate the data up to the known noise level, 
e. g., to identify a desired number of the strongest oscil-
latory components or something else.

It is important to notice that the search for frequencies 
achieved by that technique should not be regarded as 
really sequential, since after adding a new frequency, a 
strict nonlinear least-squares adjustment is performed by 
local optimization using all already determined frequen-
cies as approximate values. In order to achieve (statisti-
cal) reliability that no adjustment within the procedure 
landed in a local minimum, the whole procedure is re-
peated several times.

Fig. 1: Outline of the heuristic procedure
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5	 Application to the EOP‑C01 Series of  
the IERS

The capacity of the described technique is demonstrated 
using the polar motion series EOP‑C01 of the IERS  
(http://www.iers.org/products/38/11086/orig/eopc01. 
1900-now). We used the time span of 102 years, which is 
plotted in Fig. 2. The coordinates x and y of the Celestial 
Intermediate Pole are given relative to the IERS Reference 
Pole. The x‑axis points towards the Greenwich meridian 
and the y‑axis towards 90° West longitude.

The data values for x and y are a compilation of various 
sources and accompanied with estimated errors, having 
an average of 18 milli-arcseconds (mas). The more recent 
data are more accurate but it is not evident to assess the 
accuracy of the individual estimates. Using these error 
estimates for weighting would practically mean ignoring 
the major part of data. Since the main objective of this 
study consists in presenting the method, the data in this 
example are treated as equally weighted, which was also 
done in most studies analyzing the CO1 series.

In addition to the periodic part an offset (a, c) and a 
drift parameter (b, d) for each pole coordinate are con-
sidered in order to take the polar wander into account 
(Schuh et al. 2001):
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This additional linear part produces no special problems 
and is determined within each common nonlinear least-
squares adjustment where the frequencies are considered 
as unknowns, too. This is an advantage, since an inde-
pendent determination of linear and periodic parts dete-
riorates the quality of result.

In the considered example 30 periodicities 
were determined, that is kmax = 30; some of 
these appear to be insignificant according to 
a noise-level criterion (average estimated er-
ror of 18 mas). For the chosen time series, the 
lowest possible frequency is Fmin = 0.0098/
year and the highest possible frequency is 
Fmax = 10.0/year.

The results for the linear part are:
	 a = –3.236 as and b = 16 mas/year,
	 c = –6.771 as and d = 35 mas/year,
or converted to the trend rate and trend 
direction:
	 trend rate = 2 2b d+  = 3.91 mas/year,
	 trend direction = arctan(d/b) = 65.13°  

to the West longitude.

In Tab. 1 the trend rate and trend direction determined by 
several authors are confronted with the results obtained 
for these parameters in the present paper. The general 
agreement is rather good keeping in mind that the major-
ity of other researchers do not determine those parameters 
simultaneously with the determination of frequencies of 
periodic parts (cf. e. g. Wilson and Vicente 1980, Vondrák 
et al. 1995, MacCarthy and Luzum 1996).
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Fig. 2: EOP-C01 series of the IERS (1900–2002). The 
x-axis points towards the Greenwich meridian, “as” refers 
to arcseconds (roughly 30 m).

Tab. 1: Secular polar motion according to different sources  
resulting from various time series  
(http://hpiers.obspm.fr/eop-pc/models/PM/PM_secular_tab.html)

Source Time span Trend rate  
(mas/year)

Trend 
direction  
(0W long.)

Wilson and Vicente (1980) 1900–1977 3.40 66.0

Vondrak et al. (1995) 1900–1990 3.31 78.1

MacCarthy and Luzum 
(1996)

1899–1994 3.33 75.0

Gross (1998) 1899–1992 3.51 79.2

Vondrak (1999) 1899–1998 3.29 75.7

Schuh et al. (2001) 1899–1992 3.31 76.1

this article 1900–2002 3.91 65.1
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The polar wander is largely caused by post-glacial re-
bound, although other mechanisms such as mantle con-
vection and secular changes in ice sheet mass accompa-
nied by a secular change in sea level have an influence 
(Gross and Vondrák 1999).

Frequencies expected on the basis of theoretical con-
siderations (Moritz and Mueller 1987) are annual wob-
ble with a period of around one year and the so-called 
Chandler wobble with a period of around 1.2 years. By 
using the described technique 6 slightly different pos-
sible “annual wobbles” and 14 slightly different possi-
ble “Chandler wobbles” were obtained. These are listed 
in Tab. 2 ordered by decreasing amplitudes (presented 
in Fig. 3a and 4a). It should be noticed that the criteria 
for separability of slightly different frequencies (Kovács 
1980, Horne and Baliunas 1986) have little relevance 
when using the proposed method, since they are derived 
from the assumption that the method can determine only 
Fourier-like frequencies.

Fig. 3 shows that the strongest frequency correspond-
ing to the annual wobble has a period of ~1.0004 years 

Tab. 2: Periods of possible annual and Chandler wobbles 

Annual wobble [years] Chandler wobble [years]

1.0004 1.1931

1.0595 1.1742

1.0216 1.1553

0.9692 1.2318

1.0127 1.1923

0.9553 1.2123
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Fig. 3: Determined possible annual wobbles: a) amplitude spectrum; b) numerical eccentricity spectrum
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Fig. 4: Determined possible Chandler wobbles: a) amplitude spectrum; b) numerical eccentricity spectrum
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determined for the Markowitz wobble and for the double 
sunspot cycle is questionable, since the amplitudes lie 
somewhat beneath the average noise level.

6	 Conclusions

The considered technique is a useful tool if one is inter-
ested in the identification of periodicities in time series. 
The heuristic technique for solving this global optimiza-
tion problem has the following main advantages:
n	 for the frequencies any arbitrary real value is possi-

ble,
n	 the application to time series of any dimension is pos-

sible,
n	 the presence of data gaps within the analyzed time se-

ries generates no theoretical or numerical difficulties.

A disadvantage of the heuristic procedure is that the de-
termination of the approximate values for the frequencies 
is a time-consuming procedure. This can be smoothed out 
by using an efficient strategy for the choice of arbitrary 
frequencies in the heuristic procedure.

The new method detects the frequencies contained in 
the data without any prior information or hypothesis. 
Hence, they are nearly an exact solution of the associ-
ated global nonlinear least-squares problem. The method 

with an amplitude of 90 mas. The respective numerical 
eccentricity is 0.56, which means that the annual wobble 
corresponds to an elliptic motion. The amplitudes of all 
other periods of around 1.0 year are smaller than 18 mas 
so that the determined strongest frequency can be inter-
preted as the “real” annual wobble.

Fig. 4 shows that the two strongest frequencies cor-
responding to the Chandler wobble have a period of 
~1.19 and ~1.17 years with an amplitude of 140  mas 
and 100 mas respectively. The respective numerical ec
centricities are the two lowest with 0.27 and 0.22. Thus 
the corresponding motion might be considered as ap-
proximately circular. The 12 remaining “Chandler wob-
bles” can be regarded as insignificant.

As already revealed, two or more frequencies close to 
the Chandler and annual periods could be found, similar 
to other authors’ results. Some authors believe that there 
are only two single frequencies which change over time, 
and also some argue that there is no evidence for tempo-
ral variations in frequencies (Vondrák 1988). In fact, both 
interpretations are imaginable.

Tab. 3 shows a comparison between the strongest ob-
tained annual wobble using the described technique and 
the ones obtained by several other researchers. The dif-
ference between the result of Schuh et al. (2001) and the 
one presented here is only 0.05 days; both lie inside the 
interval determined by Höpfner (2002). In the same way a 
comparison between the two strongest obtained Chandler 
wobbles and results obtained by several other authors is 
demonstrated in Tab. 4. The periods of the two strongest 
frequencies are located within the intervals which were 
obtained by other researchers.

Taking into account that the presented technique 
needs no prior information about the existence or mag-
nitude of frequencies and that any arbitrary real value 
for the frequencies is admissible, the obtained results for 
the Chandler and annual wobble represent the informa-
tion contained in the data better than the results obtained 
using prior information or some hypothesis. Of course, the 
problem, whether the data reflect only the physical reality 
or contain additionally systematic errors, remains.

Altogether 30 frequencies were determined where 
6 frequencies could be interpreted as “annual wobbles” 
and 14 frequencies as “Chandler wobbles”. As already dis-
cussed, only one of the determined annual wobbles and 
two of the Chandler wobbles have amplitudes above the 
noise level. Among the remaining detected periods, only 
three have periods longer than ten years and are listed 
in Tab. 5. Generally assumed cause of the first period 
is the climate cycle. The second period is the so-called 
Markowitz wobble for which the causes are unknown. 
The third period might be the double sunspot cycle. It 
seems that there is a significant 21‑year periodicity in 
hydrometeorological processes correlated with this cycle 
(cf. Alexander 2005). The credibility of the frequencies 

Tab. 3: Periods of annual wobble according to different 
sources

Source Annual wobble [years]

Schuh et al. (2001) 1.00055

Höpfner (2002) 0.96–1.02

this article 1.0004

Tab. 4: Periods of Chandler wobble according to different 
sources

Source Chandler wobble [years]

Chandler (1901b) 1.16–1.20

Vondrak (1988) 1.11–1.20

Schuh et al. (2001) 1.13–1.20

Höpfner (2002) 1.16–1.20

this article 1.1742 and 1.1931

Tab. 5: Periods larger than 10 years

Period [years] Amplitude [as] Assumed causes

70.684 0.0202 climate cycle

29.502 0.0109 Markowitz wobble

21.777 0.0072 double sunspot cycle
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was illustrated using the two-dimensional EOP‑C01 time 
series. The Chandler period as well as the annual period 
could be determined. Based on the large time span of 
102 years, it is possible to detect periods longer than ten 
years and the components of the secular polar motion.
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