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Summary
We propose an approach for the simplification, i. e., generali­
zation, of three­dimensional (3D) building data. Buildings 
consist mainly of structures characterized by perpendicular or 
parallel facets. To simplify them, parallel facets are moved to­
wards each other until 3D features under a certain extent are 
eliminated or gaps are closed. For the treatment of non­ortho­
gonal structures, we differentiate between wall­ and roof­
level. For the walls, non­orthogonal structures are important 
for the characteristic shape of a building and therefore have 
to be preserved in many cases. For the roof­level, a squar­
ing approach is proposed that works by rotating roof­facets 
around one of their bounding edges, i. e., either their eave­ or 
ridge­line. Results for generalization and roof­squaring are 
presented and tasks for further research are summarized.

Zusammenfassung
Im Folgenden wird ein Ansatz zur Generalisierung von drei­
dimensionalen (3D) Gebäudedaten vorgestellt. Gebäude zeich­
nen sich durch viele rechtwinklige bzw. parallele Flächen aus. 
Für die Generalisierung werden parallele Flächen aufeinander 
zu bewegt bis kleine 3D Merkmale eliminiert oder Lücken ge­
schlossen werden. Für die Behandlung von nicht­orthogonalen 
Strukturen wird zwischen Wand­ und Dachebene unterschie­
den. In der Wandebene sind nicht­orthogonale Strukturen 
entscheidend für die Charakteristik des Gebäudes und müssen 
 daher oft erhalten bleiben. Für die Dachebene wird ein Ansatz 
zur Erzwingung von orthogonalen Strukturen vorgeschlagen, 
der Dachflächen um eine ihrer umgebenden Kanten, d. h. den 
First oder den Giebel, rotiert. Abschließend werden Ergebnisse 
für die Generalisierung und die Dachorthogonalisierung prä­
sentiert und mögliche Aufgaben weiterer Forschung zusam­
mengefasst.

1	 Introduction

When representing three-dimensional (3D) city models 
using the Level of Detail (LOD) concept, for an object 
several models with different levels of detail are used. 
Which model is chosen for the display from a specific 
point of view depends on the object’s distance. Objects 
far away are displayed with less detail than closer ones 
(cf. Fig. 1). Thus, the number of displayed polygons is re-
duced and the performance of the visualization is en-
hanced when visualizing a larger number of objects. Ad-
ditionally, the derivation of less detailed, i. e., coarser, 
representations is useful also for applications such as 
radio wave propagation for telecommunications, when 
coarse geometric models are sufficient, helping to speed 
up computations.

In order to derive a coarser representation of an ob-
ject, simplification is employed. Heckbert and Garland 
(1997) give a summary of common approaches for sur-
face simplification. Varshney et al. (1995) and Schmal-
stieg (1996) present approaches for automatic LOD gen-
eration. All of these approaches from computer graphics  

and computational geometry have in common that they 
are developed for general objects and do not consider 
the specific structure of buildings, which is dominated 
by right angles and parallel planar facets. Approaches 
especially developed for the simplification, i. e., generali-
zation, of buildings stem from cartography or Geographic 
Information Systems (GIS), but they mostly focus on two-
dimensional (2D) generalization. Many of the older ap-
proaches are summarized in Mackaness et al. (1997), 
Meng (1997), and Weibel and Jones (1998), as well as 
Mayer (2005), who additionally presents much of the ba-
sics of this paper in more detail. For the generalization 
of building ground plans, Sester (2000) uses the old but 
important approach of Staufenbiel (1973) together with 
least squares adjustment. One of the rare approaches for 
automatic 3D generalization of buildings is Kada (2002). 
Least-squares adjustment is combined with an elaborate 
set of surface classification and simplification operations. 
Thiemann (2002) decomposes a building into basic 3D 
primitives and eliminates primitives of small extent. For 
the decomposition, the algorithm of Ribelles et al. (2001) 
is used. With it, specific features of polyhedra are found 
and removed based on planar cuts. Kada (2005) gener-
alizes 3D buildings by the use of approximating planes. 
These are determined from the highly detailed building 
model and are used in a further step to build a general-
ized model of the building.

In Mayer (1998) and Forberg and Mayer (2003) 3D 
generalization is realized based on scale-space theory. 
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Fig.	1:	Different	Levels	of	Detail	(LOD)	of	a	building	auto­
matically	generated	by	simplification
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Two scale-spaces, namely mathematical morphology  
and curvature space, are applied separately in order to 
simplify building models consisting of parallel or ortho-
gonal planar facets. In the following, we propose an ap-
proach which combines the advantages of both scale-
spaces in one procedure. In section 2 the approach is 
described in detail and results obtained by an imple-
mentation in Visual C++, using the ACIS class library 
(www.spatial.com), are presented. As buildings consist 
not only of perpendicular parts, an approach for squar-
ing non-orthogonal structures, especially roofs, is intro-
duced in section 3. The paper ends with conclusions and 
an outlook.

2	 Simplification	of	parallel	structures

2.1	 Scale­Spaces	and	Generalization

In image analysis, a scale-space is obtained by deriv-
ing representations at different scales from an image, 
e. g., Lindeberg (1994). For the derivation of the repre-
sentations with coarser scales, different approaches exist. 
One of them, the reaction-diffusion-space of Kimia et 
al. (1985), combines a scale-space constructed based on 
mathematical morphology (Serra 1982) with a curvature 
dependent diffusion part. The latter is termed »curvature 
space« by Mayer (1998), who extended the reaction-dif-
fusion-space to suit the requirements of the simplification 
of vector data representing buildings. The complemen-
tary reaction (mathematical morphology) and diffusion 
part (curvature space) are applied sequentially by incre-
mentally shifting elements in or opposite to the direc-
tion of their normals, until an event, e. g., the elimination 
of a small protrusion, occurs. For mathematical morpho-
logy, all elements are shifted simultaneously by the same 
amount, either inwards (erosion) or outwards (dilation). 
For curvature space, only specific elements are shifted 
and the direction of the movement can differ (cf. Fig. 2). 
The elements to be shifted are edges for 2D ground plans 
and facets for 3D building data.

The two scale-spaces can handle different kinds of ob-
ject structures. By means of mathematical morphology 
all elements that are parallel but with opposite directions 
of the normal can be simplified. That means U-structures 
in 2D or protrusions in 3D can be eliminated and gaps 

can be filled (merge), or building parts can be separated 
(split). For elements with normals with the same direction 
(Z-structures) or with perpendicular directions (L- or box-
structures and step-structures), curvature space is needed. 
Fig. 3 compares different 2D and 3D structures for mathe-
matical morphology and curvature space.

Whereas mathematical morphology is easy to realize, 
for curvature space a complex analysis is necessary to de-
cide which elements have to be shifted in which direction. 
Forberg and Mayer (2002) present a procedure for curva-
ture space in 3D, which is based on the analysis of the 
convexity and concavity of vertices and their relations 
within facets. The procedure is complex, as many con-
straints have to be considered. As it is still not guaran-
teed that the result is satisfactory, a new approach termed 
»parallel shift« has been developed, combining advan-
tages of mathematical morphology and curvature space 
for it. The sequential combination of two separate scale-
spaces is not necessary anymore.

2.2	 Parallel	Shift

For mathematical morphology all facets are shifted until 
parallel facets collide in one plane. For curvature space, 
perpendicular facets collapse in the same edge for step-
structures or vertex for box-structures. Though, the lat-
ter practically works because the parallel facets collapse 
into planes. Understanding this has lead us to a new ap-
proach, which follows a rather simple principle: Paral-
lel facets are determined and if their distance is under 
a certain threshold defining the present scale, the facets 
are shifted towards each other so that they merge into 

Fig.	2:	For	mathematical	morphology	all	elements	are	
moved	simultaneously	by	the	same	amount,	while	for	
curvature	space	only	specific	elements	are	shifted.

Fig.	3:	U­,	L­,	and	Z­structures	in	2D	versus	protrusions,	box­,	and	step­structures	in	3D	and	their	suitability	for	
mathematical	morphology	versus	curvature	space
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one facet (cf. Fig. 4). By this means, the merge or split 
of building parts, as well as the elimination of protru-
sions, box-, and step-structures is feasible in one single 
procedure. By gradually increasing the threshold, a scale-
space is created, where every feature in coarse scale has a 
reason in fine scale. This is called causality and is a basic 
constraint for scale-spaces (cf. Lindeberg 1994). 

For parallel shift no incremental processing is neces-
sary. The two parallel facets are only shifted if their dis-
tance is under the threshold. The shifts of both facets have 
to sum up to bridge the distance. A weighting that de-
pends on the ratio of the areas of the two parallel facets 
can be applied. For the results shown in Fig. 5, two kinds 
of weighted movements were used. If both facets have 
approximately the same area, each facet is shifted half of 
the distance. Thus, structures do not simply vanish, but 
a shape adjustment takes place, which can even slightly 
emphasize certain structures (cf. Fig. 5, 3rd example from 
the left). This is in contrast to the approach of Thiemann 
(2002), where small features are simply eliminated. If the 
area of a facet is much smaller than the area of the other 
one, it is shifted for the whole distance. By this means, 
symmetry can be maintained in case of small box-struc-
tures. Otherwise, the result would be ambiguous, as one 

of three pairs of parallel facets has to be chosen ran-
domly for the parallel shift for a symmetrical configura-
tion (cf. Fig. 6). For the given examples, a smaller facet 
has got approximately the same area as its parallel facet, if 
its area is bigger than one third of the other. This weight-
ing has been determined empirically and works well for 
most of our test buildings. 

The proposed rather simple procedure is very general 
and, therefore, also suitable for complex combinations of 
orthogonal structures. As there is no need for a complex 
analysis regarding the convexity or concavity of vertices 
and facets anymore, it is rather simple to implement and 
fast to compute.

3	 Squaring

Building simplification using scale-spaces or parallel 
shift is based on the assumption of given exactly ortho- 

gonal structures. Even neglecting in-
accuracies during acquisition, which 
could be, e. g., handled by a least 
squares approach such as Kada (2002), 
buildings do not only consist of paral-
lel or perpendicular structures. There-
fore, the treatment of non-orthogonal 
structures is necessary. For this, we dif- 
ferentiate between the wall- and the 
roof-level. Non-orthogonal facets be-
longing to the roof-level are inclined, 
i. e., they are neither horizontal nor 
vertical. For squaring, they have to 
be forced into the horizontal or ver-
tical direction. The decision whether 
they have to be squared depends on 
the scale, i. e., the current LOD, and the 
size of the roof-structure. The walls 
are vertical facets. For them, strong de-
viations from perpendicular or paral-
lel structures have to be preserved in  
order to keep the characteristic shape 

Fig.	4:	Parallel	facets	under	a	certain	distance	are	shifted	
towards	each	other	until	the	facets	merge.

Fig.	5:	Results	for	the	simplification	based	on	parallel	shifts.	In	the	example	
marked	by	circles,	not	only	object	parts	are	eliminated,	but	some	are	adjusted,	so	
that	the	characteristic	shape	is	preserved	or	even	slightly	emphasized.

Fig.	6:	Within	a	symmetrical	box­structure,	a	pair	of	
parallel	facets	(dark	grey)	is	chosen	randomly.	If	both	
facets	are	shifted	by	the	same	amount,	the	result	(grey	
line	–	white)	is	not	predictable	and	the	symmetry	is	
lost.	To	avoid	these	ambiguities,	only	the	smaller	facet	is	
shifted,	if	the	area	of	one	facet	is	much	larger	than	the	
other	one.
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of the building. Only small deviations or 
small structures have to be squared. Wall-
squaring can be reduced to a 2D problem. 
Main directions in the x-y-plane are deter-
mined to be able to force a facet into one 
of them while squaring. The problem of ob-
taining the main directions could be solved,  
e. g., by the approach presented in Faber 

and Förstner (1997). We 
focus on the squaring of 
roof-facets. 

If a roof-facet is to be 
squared at a given scale, 
we force it to be hori-
zontal or vertical by ro-
tating it either around 
its eave- (cf. Fig. 7) or 
its ridge-line. In ACIS 
this rotation is termed 
»tapering«. The decision, 
around which edge of the 
eaves or ridges the facet 
has to be rotated and 
whether it should be ro-
tated into a horizontal or 

vertical plane, depends on the neighboring facets, i. e., 
those facets that share ridges and eaves with the facet 
to be tapered. As two neighboring facets are available 
for most roof-facets, which are classified into horizon-
tal (H), vertical (V), or inclined (I) facets, nine differ-
ent cases have to be considered. Fig. 8 shows that in 
some of these cases additional information is needed, 
as, e. g., if the facet on the ridge is increasing or de-
creasing, or the angle ω between the facet on the eaves 
and the inclined facet that is to be squared. Triangu-
lar facets, which in most of the cases have no ridge-
line, are forced into the vertical direction by rotating 
them around the eave-line. This way, e. g., a hip-roof 
becomes a simpler saddleback-roof.

For a reasonable generalization, the context of the 
inclined facets has to be considered. If, e. g., only one 
part of an L-shaped roof is squared, the result is not 
satisfactory. Therefore, additionally to the decision, in 
which direction and around which edge a facet is ro-
tated, related facets have to be determined. We term 
these »roof-units«, and they are defined as roof-fac-
ets with connected ridge-lines. For each unit, the av-
erage facet-area is computed. If it is under a certain 
scale-dependent threshold, the facets are tapered, i. e., 
the roof structure is reduced to a flat-roof. In Fig. 9 
left, a building consisting of two roof-units is shown. 
The roof-unit with the smaller average facet-area is 
marked with a black ridge and is generalized first. To 
employ the slope of the facets as criterion for general-
ization could be one direction for further research.

Results for this approach are presented in Fig. 10. 
While squaring, the height of a building can change. 

Fig.	8:	Taper­edge	(grey	circle)	and	­direction	(marked	by	an	arrow)	depend	
on	the	relation	of	the	inclined	facet	of	a	roof	to	its	neighboring	facets	(hori­
zontal	–	H,	vertical	–	V,	inclined	–	I).	In	some	cases	additional	information	as,	
e.	g.,	the	angle	ω	is	needed.

Fig.	10:	Results	for	the	roof­squaring

Fig.	7.	The	roof­facet	
(grey)	is	rotated	
(tapered)	around	the	
eave­line	so	that	the	
roof­facet	becomes	
horizontal	(grey	line).

Fig.	9:	Connected	horizontal	ridges	determine	two	roof­units	(black	
and	white,	left).	Depending	on	the	size	of	the	structure,	i.	e.,	the	
average	facet­area,	roof­units	are	eliminated	(center,	right).
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Sometimes the building height after squaring corresponds 
to the former ridge height, sometimes to the former eave 
height.

4	 Conclusions	and	Outlook

A new approach for the generalization of 3D vector data 
for buildings has been proposed. It combines the advan-
tages of the scale-spaces mathematical morphology and 
curvature space into one procedure, is easy to implement, 
and fast to compute. It works by shifting parallel facets 
towards each other until the facets merge and a simplifi-
cation takes place. Results show that the approach can be 
used also for complex buildings.

Concerning non-orthogonal parts, a procedure for 
squaring roof-structures has been proposed. It works 
by tapering (rotating) inclined facets either around their 
eave- or ridge-line until they become horizontal or ver-
tical. Rules to choose the specific taper-edge and -direc-
tion are introduced. Units of connected roof-facets are 
determined and treated together. Results show the poten-
tial of the approach.

Directions for further research comprise, e. g., a more 
sophisticated weight of the movements of the facets for 
the parallel shift or the scaling of the building height after 
roof-squaring, as it has been scaled either to the eave, or 
the ridge height, both of which might not be correct. The 
scaling has to concentrate on the local structure affected 
by it, but it also depends on the users’ needs. For the 
squaring of the walls the approach of Faber and Förstner 
(1997) could be adapted to determine the main horizon-
tal directions. Wall-facets that deviate from these direc-
tions have to be forced into the nearest main direction, if 
one of the following holds: either the structure is small 
enough to be eliminated during the simplification process 
in case of parallel structures, or the deviation from the 
main direction is small. 
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