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Summary
This paper attempts to study the effects of datum definition 
on the reliability of geodetic networks. Particular attention 
is paid to the geometry of datum points, defined here as the 
number and distribution of the datum points, and to its effect 
on the external reliability of the network points. 
While the internal reliability of a network is independent of 
datum definition, the external reliability depends heavily on 
the distribution of datum points. This paper presents a new 
perspective and describes relevant parameters that enable to 
define and quantify the influence of the datum on the ex
ternal reliability of geodetic networks.
Following an introduction of the concept of geodetic net-
works’ reliability and a development of theoretical tools, the 
paper presents results of numerical experiments carried out 
with a schematic horizontal GPS network. These results indi-
cate that the reliability of the adjusted coordinates in a geo-
detic network depends on the geometrical distribution of the 
points that define the datum of the network.

Zusammenfassung
In diesem Beitrag wird die Auswirkung der Datumsdefinition 
auf die Zuverlässigkeit geodätischer Netze diskutiert. Speziell 
wird die Geometrie der Datumspunkte, die über ihre Anzahl 
und Verteilung definiert ist, und deren Einfluss auf die äußere 
Zuverlässigkeit der Netzpunkte untersucht.
Während die innere Zuverlässigkeit eines Netzes unabhängig 
von der Datumsdefinition ist, hängt die äußere Zuverlässig­
keit in starkem Maße von der Verteilung der Datumspunkte ab. 
Dieser Beitrag stellt eine neue Sichtweise des Sachverhalts vor 
und beschreibt die relevanten Parameter, die die Definition und 
Quantifizierung des Einflusses des Datums auf die äußere Zu­
verlässigkeit des geodätischen Netzes ermöglichen.
Nach der Einführung des Konzepts zur Zuverlässigkeit geo­
dätischer Netze und der Herleitung der theoretischen For­
malismen werden die Ergebnisse numerischer Experimente, 
die mit Hilfe eines schematischen GPS-Lagenetzes ausge­
führt wurden, vorgestellt. Diese Ergebnisse zeigen, dass die 
ausgeglichenen Koordinaten in einem geodätischen Netz von 
der geometrischen Verteilung der Punkte, die das Datum des 
Netzes definieren, abhängen.

1	 Introduction

A geodetic datum is a set of parameters and control points 
used to mathematically define the size and shape of the 
earth and the origin and orientation of the coordinate 
systems used to map the earth. Modern geodetic datums 

range from flat-earth models used for plane surveying 
to complex models used for international applications, 
which describe the size, shape, orientation, gravity field, 
and angular velocity of the earth. The diversity of datums 
in use today and the technological advancements that en-
able global positioning measurements that are accurate to 
a decimeter level require careful datum selection and con-
version between coordinates in different datums.

When discussing geodetic networks, a datum is de-
fined as a subset of network points. In hierarchical net-
works the datum is defined by the higher order control 
points. In general, datum points should remain stable and 
consistent over time. The selection of the datum points is 
an initial stage in establishing and designing a geodetic 
control network. Grafarend (1974) defined the datum de-
sign problem as the first stage of four in the process of 
designing a geodetic network, and called it the Zero Or-
der Design.

Geodetic networks should be designed and tested ac-
cording to three criteria that determine their quality and 
utility, accuracy, reliability and cost. An ideal network 
will be one with good accuracy, high reliability and low 
cost. These criteria can be tested on the part of the net-
work which is being used to define the datum.

The accuracy of the datum and its dependence on the 
network geometry was investigated by Papo (1999). The 
experiments reported in his paper proved the effect of da-
tum selection on the accuracy of the points in the network, 
where a wide geometrical distribution of the datum points 
was better than a narrow geometrical distribution.

This paper investigates the influence of datum defini-
tion on the network reliability, and explores the relation-
ship between the datum points’ geometry and the relia-
bility of the network points. Particular attention is paid 
to GPS networks, since GPS technology is a very effec-
tive and predominant tool in constructing geodetic net-
works.

2	 The reliability concept

Reliability is defined as the ability of the network to sense 
and identify gross errors in the measurements. Baarda 
(1968) distinguishes between »internal reliability« and 
»external reliability«. The internal reliability of a control 
network measures the marginally undetectable errors in 
the measurements, while the external reliability measures 
the effect of undetected gross errors on the network coor-
dinates and on quantities computed from them.
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2.1	 Internal reliability

The w test introduced by Baarda (1968) is used in assess-
ing the internal reliability. Let us define id̂  as the dif-
ference between an observed ( i ) and a computed ( c

i̂ ) 
value, c

i i i
ˆ ˆd = −   with a standard deviation 

id̂
.s  The 

i‑th estimated quantity c
i̂  computed from the parameters 

following from the adjustment computation of n observa-
tions   except i . The test statistic iw  is defined as:

i

i
i

d̂

d̂
w =

s  
.	 (1)

Baarda showed that iw  is normally distributed with a 
zero mean and unit variance when the observations are 
without gross errors. Let 

i
∆  denote a single gross error 

connected to observation i. In this case the mean of the 
normal distribution is:

i

i

i

d̂

∆
δ =

s
 .	 (2)

The upper boundary of iδ  is u
iδ  with probability levels 

α and β (α being the level of significance, β being the test 
power). Therefore, the maximum size of a gross error that 
could contaminate the i-th observation is:

i

u u
ˆi i d

∆ = δ s .	 (3)

The vector of adjusted measurements L̂  is a linear function 
of the design matrix A and the adjusted parameters  x̂ :

T Tˆ ˆL Ax A(A PA) A PL HL+= = = .	 (4)

When free geodetic networks are considered the Moore-
Penrose inverse ( + ) is commonly used. The square matrix H 
is termed the »hat« matrix. Equation (4) can be normalized 
by pre-multiplying the matrix A and the vector L by S.  
S is defined as the square root matrix of the weight 
matrix P. If C is the matrix of eigenvectors and D the 
diagonal matrix of eigenvalues of P, then TS P C DC= = .  
S exists for any P that is positive semi-definite and sym-
metric, which is always the case with the weight matrix. 
Now equation (4) can be written in its normalized form, 
were script letters denotes normalized matrices:

ˆ ( )L A A A A L HL= =T T+ .	 (5)

The idempotent, symmetric matrix H is also termed a 
projector. Let h i be the i-th diagonal element of H . For a 
projector, the sum of squares of the entries of each row is 
equal to the row’s diagonal entry: ∑ =

k ik ih h2 . The diago-
nal elements of matrix H  fulfill the inequality 0 ≤ h1 ≤ 1.

Even-Tzur (2000) has shown that 
id̂

s  can be presented 
as a function of h i:

σ σ
d̂ i

i
= −0 1 h 	 (6)

while 2
0s  is the a-priori variance of unit weight. Now we 

use 
id̂

s  in (3) to calculate the maximum size of a gross 
error u

i∆  that could contaminate the i-th observation. For 
a particular adjustment s0 is fixed variable and u

iδ  is a 
constant that depends on α and β, therefore the matrix H 
serves as a primary tool in the internal reliability analy-
sis. Huber (1981) recommended avoiding elements of h i  
being larger than 0.5, to preclude excessive influence of 
a single measurement on the adjusted parameters and to 
ensure well-balanced and controlled solutions. Because 
of the form of the design matrix in GPS measurements, 
the matrix H  is independent of the network points’ con-
figuration (Even-Tzur and Papo 1996). The internal re
liability of a GPS network is independent of the geometric 
distribution of the network points. It depends on the con-
figuration of the GPS vectors and their precision. 

We can define ri = 1 – h i as the degree of freedom for 
measurement i. Similarly, the degree of freedom for a 
single point in the network can be defined as the sum of 
all the degrees of freedom for the measurements attached 
to the point. Assuming that k measurements are related 
to a point p in the network, then the degree of freedom 
for a single point pr  is equal to:

r kp i
i

k

= −
=
∑h

1  
.	 (7)

The degree of freedom for a single point could serve as a 
key number in the assessment of network reliability.

2.2	 External reliability

External reliability measures the influence of un
detected gross errors on the estimation of coordinates. 
Let a gross error in observation i be denoted as u

i∆  and� 
( )

i

Tu
i0 0 . . . . 0∆ ∆ = .���������������������     For the gross error 

vector 
i

∆  we compute the changes iX̂∆  of the adjusted 
coordinates in a given reference system:

∆ ∆ ∆ˆ ( )X Ni
T T T

i i
= =+ +A A A A� � .	 (8)

iX̂∆  is a ×1u  vector which depends on the reference 
system.

According to Baarda (1968), the global external reliabil-
ity can be measured by:

i

2 T
x̂ i i2

0

1 ˆ ˆ( X ) N( X )∆l = ∆ ∆
s

.	 (9)
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When substituting equation (8) into equation (9):

λ δ∆x̂ i
u i

i
i

2 2

1
= ( )

−
h
h  

.	 (9’)

The global external reliability denotes the impact of a 
single gross error on the adjusted coordinates.

When attempting to derive an expression for describ-
ing the impact of each marginally detectable gross error 
on all estimable coordinates, we can define M as the dia
gonal matrix for the n observations while

( )u u u
1 2 ndiag(M) . . .∆ ∆ ∆= .

M can be termed the internal reliability matrix. In case A 
is rank deficient due to the need for datum definition, 
hence

∆X̂ N MM
T= +A  .	 (10)

If u is the number of adjusted coordinates in the net-
work and n is the number of observations, then MX̂∆  is 
a ×u n  ��������matrix. ijx̂∆  are �������������������   the entries of the MX̂∆  matrix 
and each entry represents the effect of gross error of a 
magnitude u

i∆  in measurement i on the adjusted coordi-
nate j. Therefore, each column of matrix MX̂∆  shows the 
effect of gross errors of a magnitude u

i∆  on the adjusted 
coordinates. The total impact of n marginally detectable 
gross errors on the adjusted coordinates can be calculated 
as 2L -norm for each row of matrix MX̂∆ :

2
1, j

j

2
2, j

j

2
i, j

j

2
3u, j

j

ˆ( x )

ˆ( x )

.

X̂ for j 1,2,...,nˆ( x )
i 1,2,..., u

.

.

ˆ( x )

 ∆
 
 
 ∆
 
 
 
 ∆ = =∆ 

= 
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 
 
 

∆ 
  

∑

∑

∑

∑
	

(11)

The vector X̂∆  defines the external reliability of the ad-
justed values. Thus, the global external reliability of the 
network can be defined as:

2 T
M M

ˆ ˆtr[( X )( X ) ]l = ∆ ∆  .	 (12)

2l  defines the external reliability of the whole network 
and is dependent on datum definition. To present the re
liability of a group of points we can use equation (12) and 
find the trace related to these particular points. It can then 
be used to find the reliability of the datum points, as well 
as the control points, in the network.

3	 Datum definition and its influence on 
reliability

According to Wolf (1977), we can transform one solu-
tion, x̂ , pertaining to a certain datum into another, x̂ , 
pertaining to another datum using a similarity transfor-
mation. Let I be the identity matrix and G a similarity 
transformation matrix, also known as Helmert’s transfor-
mation matrix. Such a transformation is described by:

ˆ ˆ ˆx [I GB]x Jx= + = 	 (13)

while T 1 TB (G G) G−= − . x̂  is the unique solution that 
yields Tˆ ˆx x min→ . Note that J is idempotent: 2J J=  
and TJ J= , hence J is an orthogonal projector.

For GPS networks the size of G is 3 3×u  due to the de-
fect of rank 3 in the normal matrix. Since the definition 
of origin is missing, G looks as:

T

1 0 0 . . . 1 0 0

G 0 1 0 . . . 0 1 0

0 0 1 . . . 0 0 1

 
 =  
  

.	 (14)

The cofactor matrix for the solution x̂  is called Q. Wolf 
(1977) states that QG 0=  (�����������������������������     when the datum is defined by 
all network points��������������������������������       ), as G spans the null space of A  and 
Q = (AT A )+. Another important property is AG = 0 (Papo 
1987).

In accordance with the law of error propagation, the 
cofactor matrix Q  of the transformed solution x̂  is

TQ JQJ= .	 (15)

The solution x̂  and its cofactor matrix Q  are based on a 
datum defined by all the points in the network. It is the 
optimal datum since the trace of the cofactor matrix Q  
is minimal (Meissl 1969). However, the application of a 
datum definition that relies on all the points in the net-
work is not practical. It is hard to find even a single case 
in which we would like to base the datum of a network 
on the coordinates of all of its points.

Let xP  be a diagonal matrix with 1 for points that enter 
the datum definition and 0 for all others. When searching 
for a solution with T

xˆ ˆx P x min→  we get:

T 1 T
x xJ I G(G P G) G P−= − .	 (16)

The projector T 1 T
x xG(G P G) G P−  is no longer a symmetric 

matrix. For GPS networks the matrix J is independent of 
the geometrical distribution of the datum points. 
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3.1	 Internal reliability and datum definition

The matrix H  can be defined as H  = AQ AT. When apply-
ing the similarity transformation on the cofactor matrix 
Q for investigating if H  depends on the datum defini-
tion, we get:

H A A A A
A A

= =
= − −− −

Q JQJ

I G G P G G P Q I G G P G G P

T T T

T
x

T
x

T
x

T
x

T T[ ( ) ] [ ( ) ]1 1

== − −
+

− −

−

A[ ( ) ( )
( ) (
Q QP G G P G G G G P G G P Q

G G P G G P QP G
x

T
x

T T
x

T
x

T
x

T
x x

1 1

1 GG P G G QT
x

T T T) ] .− =1 A A A  
	 (17)

Hence, the matrix H  is independent of the specific datum 
definition. Since the matrix H  defines the internal relia-
bility, we can conclude that the internal reliability is in-
dependent of the datum definition. Since the internal re-
liability measures the marginal undetectable errors in the 
measurements, we could intuitively state that the internal 
reliability is not affected by the datum definition, as da-
tum definition is not based on measurements.

Since h i  does not depend on the datum definition, 
Baarda’s measure for the global external reliability (see 9’) 
is independent of the datum choice.

3.2	 External reliability and datum definition

As previously defined, Q is the cofactor matrix of x̂  and 
Q  is the cofactor matrix of x̂ . According to equation 
(12) the network’s global external reliability of x̂  is de-
fined as:

λ2 = =tr X X tr X XM M
T

M
T

M[( )( ) ] [( ) ( )]∆ ∆ ∆ ∆

= tr M QQ MT[ ] .A A 	 (12’)

According to equation (15) the cofactor matrix Q  of the 
transform solution x̂  is:

T TQ (I GB)Q(I B G )= + + .	 (15’)

Therefore, the global external reliability of x̂  is:

λ2 = + + + +

= + +

tr M I GB Q I B G I GB Q I B G M

tr M Q QB G

T T T T T

T T

[ ( ) ( )( ) ( ) ]

[ (

A A
A GGBQ GBQB G

Q QB G GBQ GBQB G M

T T

T T T T T

+

+ + +

)

( ) ].A  
	 (18)
Since� AG = 0 ������� we get:

λ2 = + +

= +

+

tr M Q M QB G Q M GBQ M

tr M QQ M M QGBQ M

M Q

T T T T

T T

[( )( )]

[

A A A A
A A A A
A BB G Q M M QB G GBQ M

tr MM QQ QGBQ QB G Q QB G GBQ

T T T T T T

T T T T T

A A A
A A

+

= + + +

]

[ ( )]].  
	 (18’)

Let us find for which B the network’s global external re-
liability ( 2l ) is extremum, by searching for a B that ful-
fills the equation 2[ ] B 0∂ l ∂ = :

∂
∂
= +

+ +

=

[ ]λ2

2

B
G Q MM Q G Q MM Q

G GBQ MM Q G GBQ MM Q

G Q

T T T T

T T T T

T

A A A A

A A A A
A TT T T

T T T

MM Q G GBQ MM Q

G G GB Q MM Q

A A A
A A
+

= + =

2

2 0( ) . 	 (19)

When T 1 TB (G G) G−= −  we obtain 2[ ] B 0∂ l ∂ = .

Thus the datum with the minimal trace of the cofactor 
matrix Q  yields the minimal 2l  value. This means that 
the best external reliability is achieved when datum is 
based on all the network points.

In reality there are no geodetic networks that are based 
on all of their points, and usually only a small set of 
points is used. Each datum relies on a different set of 
points leading to a different external reliability vector 
( X̂∆ ) and a different network global external reliabil-
ity ( 2l ). A reliable datum will be one with a minimal in-
fluence of gross errors in the measurements on the ad-
justed coordinates. The vector X̂∆  and the parameter 2l  
can assist us in defining which datum is to be preferred 
among various possible choices.

The external reliability of GPS networks is not affected 
by the geometrical distribution of the network points 
since the design matrix A and the normal matrix N are in
dependent of the geometrical shape of the network (Even-
Tzur and Papo 1996).

4	 Experiments with datum definition

To further explore the relationship between datum defi-
nition and reliability a small two- dimensional schematic 
GPS network, composed of 25 points, was designed (see 
Fig. 1). Three cases of vector configuration between net-
work points were tested. In case A, 48 vectors that were 
evenly spread between the network’s points were simu-
lated (depicted as solid lines in Fig. 1). In case B, 12 vec-
tors were added in the center of the network (depicted as 
horizontal broken lines in Fig. 1), and in total 60 vectors 
were simulated. In case C another 12 vectors were added 
to the perimeter of the network, totaling 72 vectors (de-
picted as broken lines in the perimeter of Fig. 1).

The variance (in meters) of a vector of length 

ij  meters between points i and j was given by 

i ij0.003 0.5ppms = + ×  , and a correlation of 10 % 
was assumed between the two vector components. Zero 
correlation was assumed between any two different vec-
tors. The weight matrix was produced using a variance of 
a unit weight equaling one, 2

0 1s = .
The minimum and maximum values of the diagonal ele

ment of H  for all cases are presented in Tab. 1. The results 
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show the following: the internal reliability of the network 
in case A is not high. The 12 vectors added in case B in 
the center of the network decreased the minimum value of 
the internal reliability even more, but there are still some 
vectors with a low internal reliability. In case C (72 vec-
tors) the achieved internal reliability is reasonable.

Tab. 2 presents the number of GPS vectors connected 
to each network point and their degrees of freedom for 
each case.

A total of three cases were simulated for the sche-
matic network. Eight datum configuration modes were 
defined for each case, one composed of all network points 
and seven composed of different sets of four points each, 
where the difference between the four datum points was 
their geometric distribution. The external reliability for 
each GPS vector configuration (cases A, B and C) for 
every datum definition is shown in Tab. 3, 4 and 5. The 
information about the external reliability is detailed sepa-
rately for the datum points and the control points by pre-
senting the minimum and maximum values. Additionally, 
the global external reliability ( 2l ) of the datum points, 
the control points and all other network points is pre-
sented. For comparison, the trace of the cofactor matrix 
is given for each experiment.

Illustrations of the external reliability are presented in 
Fig. 2, 3 and 4, where maps of equal external reliability 
lines are presented. Those maps visually demonstrate the 
propagation of the external reliability per single compo-
nent within the network. Since the simulated network is 
symmetric relative to the y and x components, the exter-
nal reliability values (and the maps) are similar for com-
ponents y and x.

5	 Discussion and Conclusions

Internal reliability can be defined by the diagonal ele-
ments of the »hat« matrix H  and does not depend on the 
datum definition of the network. The internal reliability 
is a function of the number of observations measured be-
tween the network points. 

The external reliability, as presented by Baarda, de-
notes the impact of a single gross error on the adjusted 
coordinates and depends on the datum definition. How-
ever, Baarda’s measure for the global external reliabil-
ity is not suitable for geodetic networks since it does not  

Tab. 2: The number of GPS vectors connected to each 
network point and their degrees of freedom.

Point 
no.

A (48 vectors) B (60 vectors) C (72 vectors)
No. of 
vectors

rp
No. of 
vectors

rp
No. of 
vectors

rp

  1 3 1.58 3 1.64 5 3.48
  2 4 2.10 4 2.27 6 4.11
  3 4 2.10 4 2.27 6 4.11
  4 3 1.58 3 1.64 5 3.48
  5 4 1.88 5 2.85 5 3.10
  6 4 1.92 6 3.73 6 3.90
  7 4 1.88 5 2.85 5 3.10
  8 4 2.10 5 3.05 7 4.89
  9 4 1.92 6 3.85 6 3.92
10 4 1.92 6 3.85 6 3.92
11 4 2.10 5 3.05 7 4.89
12 4 1.92 5 3.02 5 3.14
13 4 1.94 6 3.90 6 3.93
14 4 1.92 5 3.02 5 3.14
15 4 2.10 5 3.05 7 4.89
16 4 1.92 6 3.85 6 3.92
17 4 1.92 6 3.85 6 3.92
18 4 2.10 5 3.05 7 4.89
19 4 1.88 5 2.85 5 3.10
20 4 1.92 6 3.73 6 3.90
21 4 1.88 5 2.85 5 3.10
22 3 1.58 3 1.64 5 3.48
23 4 2.10 4 2.27 6 4.11
24 4 2.10 4 2.27 6 4.11
25 3 1.58 3 1.64 5 3.48

Fig. 1: A two dimensional schematic GPS network com­
posed of 25 points. The simulated vectors are divided 	
into three cases: case A: 48 vectors (solid lines), 	
case B: 60 vectors (solid lines and horizontal broken 	
lines in the center), case C: 72 vectors (all lines).

Tab. 1: The minimum and maximum values 	
of the diagonal element of H

Case diagonal element of H
min max

A 0.42 0.55
B 0.26 0.54
C 0.25 0.43
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Tab. 3: Case A: The external reliability of the network points based on 48 vectors. X̂∆  is the external reliability 	
vector of the adjusted coordinates, l  is the global external reliability factor and Q is the cofactor matrix.

Mode
Datum 

defined by 
points 

Datum points Control points All points

X̂∆  [cm] l [cm] X̂∆  [cm] l [cm] l [cm] tr(Q) [cm]
min max min max

a All 1.15 1.71 9.98 – – – 10.0 2.5
b 1-4-22-25 1.59 1.59 4.51 1.46 1.57 9.93 11.9 2.8
c 2-3-23-24 1.30 1.30 3.68 1.35 1.82 10.21 10.9 2.7
d 8-11-15-18 1.30 1.30 3.68 1.35 1.82 10.21 10.9 2.7
e 5-7-19-21 1.33 1.33 3.76 1.32 1.77 9.80 10.5 2.6
f 6-12-14-20 1.18 1.18 3.33 1.24 1.86 10.03 10.6 2.7
g 9-10-16-17 1.08 1.08 3.05 1.05 1.89 10.30 10.7 2.7
h 1-2-5-8 0.84 1.06 2.84 1.40 2.36 12.40 12.7 3.2

Fig. 2: Case A, modes 
a-h: maps of equal 
external reliability 
lines. The numbers of 
the points defining 
the datum are 
presented at the 
bottom of each map.

a: All b: 1-4-22-25 c: 2-3-23-24

f: 6-12-14-20

g: 9-10-16-17 h: 1-2-5-8 Scale bar

d: 8-11-15-18 e: 1-4-22-25
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Tab. 4: Case B: The external reliability of the network points based on 60 vectors. X̂∆  is the external reliability 	
vector of the adjusted coordinates, l  is the global external reliability factor and Q is the cofactor matrix.

Mode
Datum 

defined by 
points 

Datum points Control points All points

X̂∆  [cm] l [cm] X̂∆  [cm] l [cm] l [cm] tr(Q) [cm]
min max min max

a All 0.87 1.58 8.45 – – – 8.5 2.3
b 1-4-22-25 1.46 1.46 4.13 1.19 1.47 8.49 9.4 2.5
c 2-3-23-24 1.20 1.20 3.41 1.13 1.68 8.71 9.4 2.5
d 8-11-15-18 1.02 1.02 2.88 1.02 1.68 8.64 9.1 2.5
e 5-7-19-21 1.08 1.08 3.06 1.02 1.64 8.35 9.0 2.4
f 6-12-14-20 0.88 0.98 2.63 0.90 1.69 8.50 8.9 2.4
g 9-10-16-17 0.82 0.82 2.31 0.82 1.71 8.71 9.0 2.5
h 1-2-5-8 0.75 1.02 2.61 1.10 2.08 10.38 10.7 2.9

Fig. 3: Case B, modes 
a-h: maps of equal 
external reliability 
lines. The numbers of 
the points defining 
the datum are 
presented at the 
bottom of each map.

a: All b: 1-4-22-25 c: 2-3-23-24

f: 6-12-14-20

g: 9-10-16-17 h: 1-2-5-8 Scale bar

d: 8-11-15-18 e: 1-4-22-25
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Tab. 5: Case C: The external reliability of the network points based on 72 vectors. X̂∆  is the external reliability 	
vector of the adjusted coordinates, l  is the global external reliability factor and Q is the cofactor matrix.

Mode
Datum 

defined by 
points 

Datum points Control points All points

X̂∆  [cm] l [cm] X̂∆  [cm] l [cm] l [cm] tr(Q) [cm]
min max min max

a All 0.86 1.19 7.23 – – – 7.2 2.1
b 1-4-22-25 1.10 1.10 3.12 1.06 1.16 7.23 7.9 2.3
c 2-3-23-24 0.98 0.98 2.78 1.05 1.27 7.48 8.0 2.3
d 8-11-15-18 0.86 0.86 2.43 0.99 1.26 7.41 7.8 2.2
e 5-7-19-21 0.99 0.99 2.79 1.01 1.26 7.18 7.7 2.2
f 6-12-14-20 0.85 0.91 2.49 0.89 1.30 7.29 7.7 2.2
g 9-10-16-17 0.79 0.79 2.23 0.82 1.33 7.51 7.8 2.3
h 1-2-5-8 0.70 0.77 2.09 1.02 1.65 8.86 9.1 2.6

Fig. 4: Case C, modes 
a-h: maps of equal 
external reliability 
lines. The numbers of 
the points defining 
the datum are 
presented at the 
bottom of each map.

a: All b: 1-4-22-25 c: 2-3-23-24

f: 6-12-14-20

g: 9-10-16-17 h: 1-2-5-8 Scale bar

d: 8-11-15-18 e: 1-4-22-25
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depend on the datum definition (see equation (9’)). The 
total impact of all marginally detectable gross errors on 
the adjusted coordinates can be calculated using equa-
tion (11) and presented as a vector, which defines the ex-
ternal reliability for every coordinate in the network. An 
expression for measuring the network’s global external 
reliability is given by equation (12). This expression is 
based on the network’s datum definition and measures 
the network’s global external reliability. The minimal glo-
bal external reliability for a network is achieved when all 
the network points are used to define the datum. This cor-
responds with the approach stating that a datum based 
evenly on all the points in the network is the optimal da-
tum due to the minimal trace of its cofactor matrix.

Vanícek et al. (2001) take the attitude that reliability 
analysis should be invariant with respect to datum defi-
nition, and could therefore define the robustness of geo-
detic networks. Their reliability measures are almost in-
dependent of the datum definition when the datum of the 
network is defined with minimum constraints. In practice 
most geodetic networks rely on a datum specified by an 
over-constraints solution. This paper claims that reliabil-
ity measures, which are dependent on datum definitions, 
are essential to understanding the influence of undetected 
gross errors on the adjusted coordinates of geodetic net-
works. Cross (1983) determined the external reliability in 
a way which saliently depends on datum definition but it 
is valid for uncorrelated measurements.

Several experiments were conducted on a schematic 
GPS network in order to investigate the influence of the 
datum definition on the network reliability, and to inves-
tigate the relationship between the geometry of the datum 
points and the reliability of the network points.

As expected, the best network global external reliabil-
ity was achieved when all points in the network were used 
to define the datum, as can be clearly seen from Tab. 3, 4 
and 5 (mode a). The improvement in the external reliabil-
ity, as seen from case A to case B to case C, was the direct 
outcome of increasing the number of measured vectors, 
or in other words, when the internal reliability increased 
the external reliability increased as well.

The external reliability of a point, as shown from the 
experiments, is a combination of the geometry and the 
degree of freedom of the datum points. In this study the 
geometry of the points referred to the size and distribu-
tion of the datum points within the network. In the pre-
sented schematic GPS network the reliability of the datum 
points is identical as well, when the degree of freedom of 
the datum points is identical. 

In mode b the datum points used defined the widest 
datum. In cases A, B, and C those points have a low de-
gree of freedom and the network’s global external relia-
bility obtained is low. But in mode b the global external 
reliability of the control points is high and the maximum 
value of the external reliability of a single point is the 
lowest. In that mode the external reliability of the datum 
points is also relatively high.

In mode g the datum points used defined a narrow da-
tum. In cases A, B and C those points have a high degree 
of freedom. That combination creates a low external re
liability for the control points.

The illustrations in Fig. 2, 3 and 4 clearly demon-
strate the relationship between the geometry of the da-
tum points, their degrees of freedom and the network’s 
external reliability when discussing modes b-g.

There are cases, mainly in deformation analysis, where 
the datum points are defined by a specific subset of points 
that can not be defined with a wide geometry. In such 
cases, all the datum points are concentrated in a part of 
the network. This situation is described in mode h. The 
size and distribution of the datum points is narrow and 
the degree of freedom for those points is low. The exter-
nal reliability distribution is illustrated in Fig. 2, 3 and 4. 
We can clearly see that the reliability decreases when the 
points are located farther away from the datum. For ex-
ample, in the case of point 9 that is located closest to 
the datum and has a high degree of freedom, and there-
fore has the minimal external reliability of all the control 
points. Unlike point 25 that is located farther from the da-
tum and has a low degree of freedom, and therefore has 
the maximal external reliability of all the control points.

The solutions obtained in all cases clearly display the 
effect of the datum selection on the reliability of the net-
work. A datum, based on points with a higher reliability, 
provides a more reliable network.
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