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Summary

To smooth digital images while preserving the edges of an
image, the Bayesian analysis is applied. The prior information
that the image is smooth except for the edges is introduced by
a Gibbs distribution based on a modification of the density of
Huber (1964) for robust parameter estimation. The analytical
solution for estimating the intensity level of one pixel leads to
the very fast estimation by iterated conditional modes (ICM)
of Besag (1986). Applying it to the smoothing of a digital
image, the results show an excellent edge preserving quality.
They agree numerically with the estimates of Markov Chain
Monte Carlo methods, i. e. the Gibbs sampler and the Metro-
polis algorithm. The method ICM therefore gives a maximum
a posteriori (MAP) estimate.

Zusammenfassung

Um digitale Bilder zu gldtten, wobei die Kanten im Bild zu er-
halten sind, wird das Bayes-Verfahren angewendet. Die Vor-
information, dass ein Bild glatt bis auf die Kanten ist, wird
durch eine Gibbs-Verteilung eingefiihrt, die auf einer Mo-
difizierung der Dichte beruht, die Huber (1964) fiir die robus-
te Parameterschédtzung einfiihrte. Die analytische Ldsung fiir
die Schdtzung des Intensititsniveaus eines Pixels fiihrt auf das
sehr schnelle ICM (iterated conditional modes)-Verfahren von
Besaq (1986). Bei der Anwendung auf die Glittung eines digi-
talen Bildes zeigt es eine exzellente Eigenschaft, die Kanten im
Bild zu erhalten. Die numerischen Ergebnisse stimmen mit den
Schétzungen von Monte-Carlo-Methoden mit Markoff-Ketten
iiberein, und zwar dem Gibbs-Verfahren und dem Metropolis-
Algorithmus. Das ICM-Verfahren fiihrt also auf eine MAP (ma-
ximum a posteriori)-Schétzung.

1 Introduction

Bayesian analysis in contrast to traditional statistics is
founded on Bayes’ theorem which gives the probability
density function for the unknown parameters. By this
density function the unknown parameters can be esti-
mated, confidence regions for the parameters be estab-
lished and hypotheses for the parameters be tested. In
the linear model, e. g., analytical solutions are derived for
these tasks. If this is not possible, one has to rely on nu-
merical procedures, especially Monte Carlo integration.
In the last two decades, Markov Chain Monte Carlo
methods, which sample from the probability distribution
for the unknown parmeters, have dominated the numeri-
cal procedures. The Metropolis algorithm was the first one
to be developed and goes back to Metropolis et al. (1953).
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It does not need a special distribution to sample from.
A variant of the Metropolis algorithm is the technique of
simulated annealing by Kirkpatrick et al. (1983), although
it is an optimization instead of a simulation method. A
scale parameter, called temperature, is introduced into the
target distribution and gradually decreased to avoid being
trapped in local minima.

Especially the Gibbs sampler of the Markov Chain
Monte Calo methods turned out to be a very versatile
and efficient procedure. It was applied together with the
simulated annealing by Geman and Geman (1984) for the
Bayesian restoration of digital images by a maximum a
posteriori (MAP) estimation. Gelfand and Smith (1990)
showed that it could be used for a variety of problems
of Bayesian inference. It generates random values from
conditional distributions for the unknown parameters.
Monte Carlo simulations take computing time, but they
can be readily applied in parallel computing, cf. Koch
et al. (2004).

In digital image restoration, e.g. in computer tomo-
graphy, there is the prior information that locally the
image is smooth except for edges, sudden changes of the
intensity values of the pixels of the image. Prior informa-
tion in Bayesian analysis is readily expressed by the prior
distribution. The intensity levels of the pixels of a digi-
tal image represent a random field for which the Markov
property can be assumed because the intensity value of
a pixel is mainly influenced by the ones of the pixels of
the neighbourhood, cf. Koch and Schmidt (1994, p. 299).
The prior information can therefore be expressed by the
Gibbs distribution which may be defined such that large
density values follow for smooth images and small ones
for rough images so that a smooth image results from the
prior information. However, the smoothing effect has to
stop at the edges of the image.

This has been accomplished by introducing a random
field of line elements, cf. Busch and Koch (1990). The
line elements are positioned between the pixels and re-
presented by discrete random variables which obtain the
value zero if no element is present and the value one if
there is an element. However, introducing prior informa-
tion for the random field of edges is not quite a simple
task.

For reconstructing images of computer tomography it
has been proposed to model the Gibbs distribution for
the prior information by the density of Huber (1964) for
the robust parameter estimation, cf. Fessler et al. (2000).
This idea is quite appealing since an intensity value of a
pixel beyond an edge, which should not contribute to the
smoothing process, is considered an outlier. For a better
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edge preserving quality the density of Huber (1964) has
been modified here such that pixels beyond edges are not
used for the smoothing. The resulting approach is inves-
tigated in the following for a digital image given by grey
values.

Assuming a normal distribution for the measured grey
values of the pixels and a Gibbs distribution for the prior
information based on a modified density function of Hu-
ber (1964) leads to an analytical solution for the estimate
of the unknown grey value of one pixel. By iteratively
applying it, the estimation by iterated conditional modes
(ICM) of Besag (1986) is obtained, which is very fast. It
gives a smooth image with an excellent edge-preserving
quality. To find out whether the ICM algorithm gives only
approximate results, the Gibbs sampler and the Metro-
polis algorithm are used to estimate the unknown grey
values of the restored image. The numerical solutions
agree except for minor deviations. The method ICM there-
fore gives the MAP estimate.

In the following section a short review is given for
Bayes estimation in linear models. In addition, the esti-
mations by Monte Carlo integration and by the Markov
Chain Monte Carlo methods are outlined. Section 3
formulates the problem of image restoration using a
modified distribution for the robust parameter estimation
as prior information, while section 4 presents a numerical
example. The paper ends with conclusions.

2 Bayes Estimation by Monte Carlo Methods

Let 3 be the u X 1 random vector of unknown parameters
and y the n x 1 random vector of observations, p(|C)
the prior density function for 3 given the background
information C, p(y|B, C) the likelihood function where
y is given, then the posterior density function p(B|y, C)
for 3 is obtained from Bayes’ theorem, cf. Koch (2000,
p. 36),

1
p(Bly.C) = _p(BIC)p(y|B,C) (2.1)
with ¢ being the normalizing constant
c= /Bp(ﬁlc)p(ylﬁ,c)dﬁ (2.2)

where the integral is extended over the parameter space
B of B. Usually the constant ¢ is omitted in (2.1), thus

p(Bly,C) < p(BIC)p(y|B, C)

where o< denotes proportionality. For a simpler notation
the conditioning on the background information C is
omitted in the following,.

Estimating the unknown parameters 3 is considered
a decision problem and by introducing a quadratic loss
function we obtain the Bayes estimate 3 of B

B= /Bﬁp(ﬁly)dﬁ -

(2.3)

(2.4)

Using the zero-one loss we find the maximum a posteriori
(MAP) estimate. The same loss function leads to the tests
of hypotheses. Also confidence regions can be derived by
(2.1). In the following, however, we will concentrate on
the Bayes estimate (2.4).

A linear model for the unknown parameters f3 is de-
fined by

XB = E(y|B) with D(y|o?) = o*P! (2.5)

with X being an n X u matrix of given coefficients, which
for simplicity shall possess full column rank, o the va-
riance factor and P the known positive definite weight
matrix of the observations y, which are assumed as nor-
mally distributed, thus

y|B, 0> ~ N(XB,o*P7!). (2.6)

The likelihood function p(y|B) following from (2.6) to-
gether with the noninformative prior for 3, which is a
constant, lead — with Bayes’ theorem (2.3) - to the poste-
rior density function p(B|y) for B:

1
p(Bly) o< exp {— 552 (¥ —XB)'P(y - Xﬁ)} .27
This is the density function of the normal distribution

Bly ~ N(B,o*(X'PX)™ 1) (2.8)

with B being the Bayes estimate (2.4) of B. It is identical
with the one obtained by the well known method of least
squares, cf. Koch (2000, p. 90),
B = (X'PX)"'X'Py. (2.9)
This Bayes estimate is also identical with the MAP esti-
mate.

In case we cannot derive an analytical solution like
(2.9), we have to rely on numerical methods. The Monte
Carlo integration is - for higher dimensions - well suited
to solve the integral (2.4). It is based on the assumption
that a density function u(f) is known which approxi-
mates the posterior distribution p(B|y) and from which
random values for 3 can be generated. Let these random
values be denoted by B; with i € {1...m}. The Bayes
estimate [3 then follows with, cf. Koch (2000, p. 191),

m
B= 1y X BBy u(B,) .10
i=
This is called importance sampling because the random
values f3; are generated at points which are important
as u(f3) approximates p(B|y). A simpler estimate than
(2.10) is found by the Markov Chain Monte Carlo methods
which sample from the posterior distribution for g itself.
Thus, with p(B|y) = u(pB) and with B; now distributed
like p(B|y) we obtain instead of (2.10) the Bayes estimate

.o1mnm
B= %2‘1/31- (2.11)
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In addition, the covariance matrix of 3 can be determined
by the random values 3; and hypotheses for 3 be tested,
cf. Gundlich et al. (2003) and Koch (2005).

As mentioned already in section 1, the Metropolis al-
gorithm was the first of the Markov Chain Monte Carlo
methods to be developed. Its idea is to simulate a Markov
Chain in the parameter space B of 3 such that the limiting
distribution of the chain is the target distribution, in our
case the posterior density function p(B|y). The Metro-
polis algorithm can be applied to generate random sam-
ples from any target distribution whose normalizing con-
stant does not have to be known so that (2.3) can be used.
However, slow convergence in case of higher dimensions
might be encountered. The algorithm runs as follows, cf.
Gelman et al. (2004, p. 289).

One samples a proposal B* from a jumping or pro-
posal distribution p;(8*|B!~1) for t € {1,2,...} with
Bt being the previously generated vector. The jump-
ing distribution has to be symmetric for the Metropolis
algorithm, however not for the Metropolis-Hastings pro-
cedure, which will not be considered here. Symmetry
means that the probability of obtaining 8’ from perturb-
ing S is equal to the one of obtaining B8 from perturbing
B’. The ratio r of the densities

*
r= PEY). (2.12)
p(B " ly)
is computed. One sets
B — {[.Etl with pr.obablhty min(r, 1) 2.13)
3 otherwise.

The last step requires generating a random number v uni-
formly distributed in the interval [0, 1] and B* is accepted,
if v < r since P(v) = v.

A simple algorithm, which is frequently applied, is the
random-walk Metropolis, cf. Liu (2001, p. 114). The last
generated vector B'~! is perturbed by a random vector
€'~ to obtain the proposal B* = B!~ + €'~1. The com-
ponents of €/ ~! are assumed as being independent and
identically distributed usually like the normal distribution
which is symmetric. Thus, €/ =1 can be easily generated.
Random-walk Metropolis together with the normal distri-
bution will be used in the example of section 4.

As mentioned in the introduction, the Gibbs sampler is
the algorithm frequently applied to sample from a poste-
rior density function p(B|y) by a Markov Chain Monte
Carlo method. To apply it, one has to sample, if we de-
fine B = |B1,B2,.-.,Bul’, from the conditional density
functions

p(ﬁi“slr---/ﬁi—l/ﬁi+1r~--/ﬁu) for le{lllu}

(2.14)
of the posterior density function p(B|y). Highly corre-

lated components of 3 should be collected in subvectors
and random values should be generated for these subvec-
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tors, cf. Gundlich et al. (2003). In case of (2.14) the Gibbs
sampler begins with arbitrary starting values

B, By

Then, random values

(2.15)

/351) from /31“3%1 .. /ﬁglo/y)

ﬁgl) from p(Ba |ﬁ% /330),..., uo),y)

By from (/53|/31 L0, 8Y, Y y) (216)
,Sl) from P(ﬁu|/3§1),,/3£1,)1/}/)

are sequentially generated to complete the first step of an
iteration. After a burn-in phase of let say o iterations the
Gibbs sampler can be shown to converge to the posterior
density function p(|y) so that the generated samples j3;
with i > o are distributed like p(B|y).

3 Image Restoration

We are dealing with rectangular arrays of pixels whose
intensity values have been measured e.g. by counts
of photon emissions of a computer tomography. The
measurements are distorted by noise so that the image
has to be reconstructed from noisy measurements, cf.
Geman and McClure (1987). The image shall contain dis-
continuities or edges which means sudden changes of
the intensity levels. In the following we will concentrate
on the problem of smoothing the image except for the
edges. We therefore consider the simple problem of a di-
gital photography of one colour where a reconstruction
of the image like in computer tomography is not needed
and where the intensity is measured by grey values. The
point spread function of the imaging process, which de-
scribes the functional relation between measurements and
unknown parameters, is then linear with the coefficient
matrix being a unit matrix.
Let Q) be the set of pixels forming a lattice with

Q = {r=(mmn),0<m<M,0<n<N},
(M+1)(N+1)

and let the measurement of the grey value of pixel r be y,
withr € {1,...,u} and y be the u x 1 vector of measure-
ments. Let the unknown, restored grey value of pixel » be
By with r € {1,...,u} and B the u x 1 vector of un-
known parameters. Let the measurements be independent
und have variances o2, We then obtain instead of (2.5)
the simple linear model

B=E(y|B) with D(ylo*) =01,

As already mentioned in section 1, the measurements y
as well as the unknown parameters 3 represent Markov
random fields. We assume the observations as normally
distributed so that the likelihood function follows from

p(y1B,0%) o exo { LT } |

reQ

u = (3.1)

(3.2)

(3.3)
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The restored image should be smooth except for the edges.
This prior information may be introduced by a Gibbs dis-
tribution because of the equivalence of Markov random
fields and neighbour Gibbs fields, cf. Besag (1974). The
Gibbs distribution for the vector 3 is given by

p(B) = 5 exp {~U(B)} 6.4
where Z denotes the normalizing constant and the po-
tential U () is introduced for so-called cliques which are
configurations of neighbours and defined for a neigh-
bourhood N, of order p for a pixel r. For the numerical
example of section 4 we introduce the neighbourhood N3
of order p = 3 defined by the following indices s; with
ie{1,...,6},cf. Koch and Schmidt (1994, p. 277),

N3 = {s1,52,53,54,55,56}
= {(1,0),(0,1),(1,-1),(1,1),(2,0),(0,2) } .
(3.5)

The neighbourhood of pixel r follows with r +s; and
r — s; so that it consists of 12 surrounding pixels for the
neighbourhood Nj. If we define potential functions only
for cliques with two sites, we may formulate the prior in-
formation for 3 by, see Busch and Koch (1990),

(3.6)

- % 2 Z (ﬁr_ﬁr+s)2

VEQ SeNp

p(B) < exp

which is a normal distribution. The larger the difference
B+ — Br4+s between the unknown grey value of pixel r and
the one of the neighbouring pixel r 4 s the smaller is the
density value. The estimation of a rough image is there-
fore less likely than the restoration of a smooth one. The
contribution of the prior information is controlled by the
coefficient cg. A prior distribution with a similar prop-
erty which, however, is not a normal distribution has been
proposed e. g. by Geman and McClure (1987).

The sum in (3.6) has to be extended over the poten-
tials of all cliques with two sites in the set (O which
is accomplished by summing over the cliques of half of
the neighbourhood Nj. The conditional density function
p(B+|9By, 02) for B, given the unknown grey values 93,
in the neighbourhood of r follows from summing over the
potentials of the cliques of the whole neighbourhood Ny,
cf. Koch and Schmidt (1994, p. 262),

_ ‘B
2072

2 (ﬁr - ﬁr+s)2

+sENp

p(ﬁr|aﬁr1 0'2) X €exp
(3.7)

which again is a normal distribution.

The posterior density function p(B|y, o?) for the un-
known grey values 3 of the restored image is obtained
from Bayes’ theorem (2.3) with the prior density function
(3.6) and the likelihood function (3.3) by

p(Bly, o)

X exp {— ;7 Z(Vr_ﬁr)z_% z 2 (ﬁr_ﬁr+s)2} .

reQ) reQ seNy

(3.8)

We are looking for iterative estimates of 3 by means of an
analytical solution for the estimate of 3, of one pixel r.
We use the conditional density function p(j3,|98;, y, 0%)
for 3, following with (3.7) from (3.8)

p(BrloBr, y, 52)

1

C
_ m(yr_ ‘B

- 202

z (/57 - ﬁrJrs)z

+sENy

Br)?

X exp

(3.9)

By comparing this density function with the posterior
density function (2.7) we recognize that (3.9) results from
the special linear model

Yr
1 BT+51
X = 7 B:[sr/ y: /57751 7
1
ﬁr-ﬁ-sl
ﬁr—sl
1 0 0 0 0
0 1/cg 0 0 0
D(y‘o_z) _ 0_2 0 0 1/Cﬁ 0 0
0 0 0 1/cg O
0 0 0 0 1/cg
(3.10)

with s; being the last index for the neighbourhood N.
According to (2.8) the unknown grey value 3, of pixel r
is therefore normally distributed like

Br10Br, y, 0% ~ N | Br,d?(1+ Y cp) ™t (3.11)
+s€Np
with the Bayes estimate /§, of 3, from (2.9)
-1
Br=(1+ Y ¢ Vet Y, CpBris
+sEN) +sEN)
(3.12)

Although large differences 3, — 3,45 in grey values
between pixel r and the pixel r 4 s in half of the neigh-
bourhood of 7 or in the whole neigborhood of r cause
small density values according to (3.8) or (3.9), they still
contribute to the estimate f3,. If pixel r + s lies with re-
spect to pixel r beyond an edge, it must not effect the
estimate f3,. Since edges in images are formed by jumps
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in grey values, we modify the density of Huber (1964), see
also Koch (1999, p. 259), for a robust parameter estima-
tion such that we use in (3.6) and (3.7) for a given value
of the index s

p(Br) o< exp (Br— [3,+s)2/2 for |Br — Brys| <c
p(ﬁr) = 0 for |/37 - ﬁrJrs‘ >c
(3.13)

where the constant ¢ has to be set according to the jumps
of the grey values representing the edges which one wants
to preserve. Introducing (3.13) means that in (3.8), (3.9),
(3.11) and (3.12) we set

g # 0 for |Br—Prus| <c
cg = 0 for [By—Brys| >c.

Thus, (3.14) prevents the grey values of pixels beyond
edges specified by ¢ to enter the estimate 3, in (3.12) so
that an edge preserving quality is obtained.

The estimate (3.12) together with (3.14) is iteratively
applied. In one cycle of an iteration the grey values of
all pixels r € Q are estimated. Each estimate replaces
immediately the estimate of the previous iteration. This
gives the estimation by iterated conditional modes (ICM)
of Besag (1986) since the Bayes estimate (3.12) is also a
MAP estimate, as already mentioned in connection with
(2.9). It is very fast, but one has to find out whether this
algorithm gives only approximate results.

The grey values of the restored image are therefore also
estimated by the Gibbs sampler. The conditional density
function for the Gibbs sampler (2.16) is obtained by the
distribution for S3;|98;,y, o2 with r € {1,...,u} from
(3.11) together with (3.12) and (3.14). After a burn-in
phase the Gibbs sampler gives random values for the vec-
tor 3 of grey values distributed like the posterior density
function (3.8). The estimates 3 of the grey values then
follow from (2.11).

Finally, random-walk Metropolis is applied to estimate
the grey values of the restored image. Densities of the pos-
terior density function (3.8) with (3.14) are inserted into
(2.12) to compute the ratio r. Because of (3.14) sudden
changes of the densities from (3.8) occur. Local minima
may therefore be encountered for ﬁtfl in (2.13) which
cannot be left in case of r < 1, if the proposal g* dif-
fers too much from [3“1. Small variances in comparison
to o2 in (3.8) have therefore to be applied to generate
€!~1 from the normal distribution for the random walk.
This results in a slow convergence of the Metropolis al-
gorithm. For the following application we therefore start
from the estimate of the Gibbs sampler thus checking in
addition whether the Gibbs sampler has reached as limit-
ing distribution the posterior density function (3.8).

(3.14)

4 Numerical Application

The derived method for restoring an image by smoothing
has been applied to a digital photography of low contrast
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with the intensities of the pixels measured by grey values.
The photograph comprising 525 x 446 pixels, see Fig. 1,
has been taken from outside through a double window
into a room showing a bookshelf and double reflections
of bushes outside. Fig. 2 depicts a moderate smoothing
by applying the method ICM with (3.12) and by setting
¢ = 10.0 expressed in grey values and cg = 1.0. The
starting values were the measured grey values. For the
convergence of the iterations the maximum difference
between the grey values of successive iterations should be
less than a few grey values. Here, the maximum difference
was chosen to be less than 0.01 which was reached after
75 iterations. A stronger smoothing is shown in Fig. 3
with ¢ = 21.0 and ¢g = 1.0. More details than in Fig. 3
appear in Fig. 4 by setting ¢ = 21.0 and cg = 0.5. It
is obvious by comparing Fig. 2, 3 and 4 with Fig. 1 that
the edges of the image are well preserved. If a smoother
image is needed than the one shown in Fig. 3, a larger
neighbourhood than N3 in (3.5) should be chosen.

The results of Fig. 2 to 4 have been obtained by
estimating the grey values during one iteration syste-
matically row by row. The pixels were also randomly se-
lected for each iteration. This procedure is slower than the
one for the systematic scan. The square root of the mean
squared differences between both approaches equals 3.0
grey values. The maximum difference is 37.6 grey values
and appears at the boundary of an edge. It means that
the boundary of the discontinuity is shifted by one pixel
between both results. This cannot be recognized by look-
ing at the two images so that the results of both ap-
proaches can be assumed to agree.

The grey values shown in Fig. 2 have also been esti-
mated using a systematic scan by the Gibbs sampler as
described in section 3. The standard deviation o = Vo2
in (3.11) was set equal to 4.0 according to the variations
of the grey values in the image. After a burn-in phase of
75 iterations 1000 samples [3; were generated by (2.16)
with (3.11) for the vector 3 and lead to the estimate B
according to (2.11). The square root of the mean squared
differences between these results and the ones of Fig. 2
equals 3.4 grey values while the maximum difference is
35.7. It appears at the boundary of an edge. This cannot
be recognized by looking at the two images so that the
results can be assumed to agree.

Finally, the Metropolis algorithm has been applied
starting from the estimate of the Gibbs sampler as
explained in section 3. The standard deviation for the
normal distribution of the random walk was set to 0.0008
and 50000 iterations were computed. Despite of the
small standard deviation the rate for accepting a proposal
to rejecting it was only 0.065. The acceptance rate for
an efficient jumping rule for the Metropolis algorithm in
high dimensions is about 0.23, cf. Gelman et al. (2004,
p- 306), so that a smaller standard deviation could have
been chosen which would result, however, in a slower
convergence. During the 50 000 iterations the proposals
were accepted for » > 1 in (2.12) in 21130 cases and
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for r < 1 for the rest of the cases. This indicates that the
Metropolis algorithm was in a state of equilibrium with
the posterior density function (3.8) as limiting distribu-
tion. The square root of the mean squared differences
between the estimates of the Gibbs sampler and of the
Metropolis algorithm is 0.10 grey values with the maxi-
mum difference being 1.05. Thus, also the Gibbs sampler
has converged to the posterior density function (3.8).

Fig. 1: Original Image

Fig. 3: Image Smoothed with c=21.0 and cg=1.0

Fachbeitrage

5 Conclusions

By assuming a Gibbs distribution as prior based on a
modified density of Huber for a robust parameter esti-
mation the fast algorithm ICM is derived. Controlled by
two parameters it gives a smooth image where the edges
are well preserved. The numerical results of the method
ICM agree - except for minor deviations — with the Bayes

Fig. 2: Image Smoothed with c=10.0 and cg=1.0

Fig. 4: Image Smoothed with c=21.0 and cg=0.5
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estimates of the Gibbs sampler and the Metropolis algo-
rithm. It can therefore be concluded that the algorithm
ICM does not give an approximate solution but the Bayes
estimate which for the linear model is identical with the
MAP estimate.
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