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Summary 
In the last decade, the utilization of an Inertial Navigation 
System (INS) as a stand-alone system or integrated with 
other navigation systems such as a Differential Global Posi-
tioning System (DGPS) has become a standard tool in many 
applications. However, current INS error models that are 
used in most INS and INS/DGPS applications have some 
limitations, which in turn affect the overall navigation ac-
curacy. One of these limitations is associated with the 
stochastic modeling of inertial sensor errors in the INS error 
model. For most of the navigation-grade INS systems 
(gyro drift 0.005–0.01 deg/h), a 1st order Gauss-Markov (GM) 
model is usually used. This is also true for low-cost inertial 
systems (gyro drift 100–1000 deg/h), although sometimes a 
white noise process instead of a 1st order GM model is im-
plemented. In this Paper, an overview of the different pos-
sible random processes for stochastic modeling of inertial 
sensor errors is presented. The actual behavior of INS sensor  
random errors is shown by computing the actual Autocorre-
lation Sequence (ACS) of inertial experimental data. The re-
sults showed that none of the commonly used random pro-
cesses is adequate for modeling INS sensor errors. In addi-
tion, numerical analyses are performed to illustrate the poor 
accuracy of ACSs that are obtained from inertial experi-
mental data. The paper offers a new method to model the 
INS stochastic errors using Autoregressive (AR) models of 
orders higher than one. Using real INS data, the results 
showed that the performance of AR processes is better than  
the performance of any of the currently used processes by 
40 % to 70 %. 

Zusammenfassung 
Ein Trägheitsnavigationssystems (INS) als Einzelsystem oder 
in Verbindung mit anderen Navigationssystemen wie dem 
Differentiellen Global Positioning System (DGPS) ist im letz-
ten Jahrzehnt ein Standardwerkzeug in vielen Anwendungs-
bereichen geworden. Jedoch haben Fehlermodelle, die mo-
mentan in den meisten INS- oder INS/DGPS-Systemen Ver-
wendung finden, Einschränkungen, die die Genauigkeit der 
Navigationslösung beeinträchtigen. Eine dieser Einschrän-
kungen ist mit der Modellierung des stochastischen Fehlers 
im INS-Fehlermodell verknüpft. Für die meisten INS-Systeme 
der Navigationsklasse (Kreiseldrift 0.005–0.01 deg/h) wird 
normalerweise ein Gauß-Markov(GM)-Modell erster Ordnung 
verwendet. Dies gilt auch für billigere Systeme (Kreiseldrift 
100–1000 deg/h), wenn auch manchmal ein Prozess mit 
weißem Rauschen anstelle des Gauß-Markov-Modells erster 
Ordnung implementiert ist. In dieser Veröffentlichung wird 
eine Übersicht der verschiedenen möglichen Zufallsprozesse 
für die stochastische Modellierung eines Trägheitsnaviga-

tionssystems vorgestellt. Das tatsächliche, zufällige Fehler-
verhalten des INS-Sensors wird mit Hilfe der Autokorrela-
tionssequenz (ACS) von Versuchsdaten bestimmt. Die Ergeb-
nisse zeigen, dass keiner der allgemein verwendeten Zufalls-
prozesse geeignet ist, das Fehlerverhalten des INS-Sensors zu 
beschreiben. Um die geringe Genauigkeit von ACSs, die aus 
Versuchsdaten gewonnen werden, zu verdeutlichen, werden 
zusätzlich numerische Berechnungen durchgeführt. Darüber 
hinaus wird hier eine neue Methode zur Modellierung des zu-
fälligen Fehlerverhaltens unter Verwendung von autoregres-
siven (AR) Modellen höherer Ordnung vorgestellt. Testergeb-
nisse mit gemessenen INS-Daten zeigen, dass die Leistung 
des autoregressiven Prozesses um 40 % bis 70 % besser als 
jedes der bisher verwendeten ist. 

1 Introduction 

The integration of an Inertial Navigation System (INS) 
with a DGPS has been implemented for several years in 
different geodetic applications. In all of these applica-
tions, the integrated INS/DGPS system is used for pro-
viding the navigation information (position and orienta-
tion) for the system carrier. For mobile mapping pur-
poses, the INS/DGPS navigation information is provided 
to an imaging sensor mounted on the same carrier. The 
imaging sensor can be a frame-based (analog) aerial 
camera, a Charge Coupled Device (CCD) digital camera, 
a laser scanner, a pushbroom scanner or a Synthetic 
Aperture Radar (SAR). Another application of INS/DGPS  
that has received the attention of geodesists in the last 
decade is airborne gravimetry. Using the INS/DGPS 
navigation solution (for the computation and compen-
sation of the system errors) and subtracting the aircraft 
acceleration (obtained by twice differentiating DGPS 
positions) from the total sensed acceleration (obtained 
by INS accelerometer specific force measurements), the 
gravity field can be determined with high accuracy. 

The accelerometer and gyro sensor errors of an INS 
consist of two parts: a deterministic part and a stochas-
tic part. The deterministic part includes biases and scale 
factors, which are determined by calibration. The sto-
chastic part is basically due to the inertial sensor 
residual errors. In the standard operation of INS stand-
alone and INS/DGPS navigation applications, the INS 
mechanization is described using a system of differen-
tial equations that are solved to provide positions, velo-
cities and attitudes. Due to the INS sensor errors, the 
solution of such equations contains both systematic and 
stochastic errors. 
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The INS deterministic error models are obtained by 
linearizing the INS mechanization equations while the 
INS stochastic error models are formed for the INS 
sensor random errors using a random process such as: 
white noise, random constant, random walk, Gauss-
Markov or periodic random processes. Both determinis-
tic and stochastic error models are included in the INS 
error model so that both error types can be estimated 
through Kalman Filter (KF), see Fig. 1. However, it is the 
latter error type that will be revisited in this paper. In 
Fig. 1, the system initial trajectory (velocity, position 
and attitude) is obtained by integrating the output of 
the INS sensors. The updates for the KF are obtained 
through Zero-Velocity Updates (ZUPTs) in case of INS 
stand-alone navigation and DGPS position and velocity 
in case of INS/DGPS integration. 

In most of the current INS error models, the inertial 
sensor random errors (residual biases b) are described by 
a random process, where the process is considered to be 
stationary in general (it will be shown later that this 
assumption is not always valid). In this case, the process 
is assumed to be completely defined by its Autocorrela-
tion Function (ACF) specifications (Brown and Hwang 
1997). For a stationary random process b(t), the ACF is 
defined as: 

bb
t

( ) [b(t).b(t )] mean b(t).b(t )
∞

=−∞

 τ = + τ = + τ  
∑� � , (1) 

where E[] is the mathematical expectation operator, t is 
the time and τ is the time lag between samples. For dis-
crete-time signals, the Autocorrelation Sequence (ACS) 
is computed instead. The ACS is defined by replacing t 
by a sampling sequence k and τ by a sampling lag m, 
and hence: 

bb
k

(m) [b(k).b(k m)] mean b(k).b(k m)
∞

=−∞

 = + = +  
∑� � . (2) 

The values of bb(m)�  are known as the ensemble auto-
correlations since it is assumed to be for infinite data 
records. In practice, the ACS is computed for a finite 
data of length N, and thus, bb(m)�  is replaced by 

the sample autocorrelations bb(m)�  (Orfanidis 1988). 
Therefore, for a time-series of measurements b(k),  
k = 1, 2, 3, …, N, the sample ACS is determined by: 

N m

bb
k 1

1
(m) [b(k).b(k m)] b(k).b(k m)

N m

−

=

= + = +
− ∑� � . (3) 

The value of the ACS at lag m = 0 is given as: 

N
2 2 2 2

bb b b
k 1

1
(0) [b (k)] b (k)

N =

= = = σ + µ∑� � , (4) 

where bσ  and bµ  are the standard deviation and mean 
of the residual bias b, respectively. The ACS of the INS 
sensor errors is computed using a long sequence of INS 
sensor measurements of static data after removing its 
mean (i. e. bµ  will be zero). The Fourier Transform of 
the ACF is the Power Spectral Density (PSD) bb�  (or the 
Periodogram in case of the ACS). 

2 Possible Random Processes for Modeling INS 
Sensor Errors 

2.1 White Noise (WN) 

A WN process usually has a zero mean and when sta-
tionary, it has a constant PSD Sbb = Sbb(0) (Anderson 
and Moore 1979). Thus, the ACF and ACS of a station-
ary WN process are determined as: 

����bb bb( ) ( )τ = τ� � � , (5a) 
����bb bb(m) (m)=� � � , (5b) 

where ���  is the delta function. Recalling Equ. (4) and 
considering the definition of (m)�  into Equ. (5b): 

    ����2 2
bb b bb(0) [b (k)] (0)= = =� � � � �  

�2
bb b(m) (m)⇔ =� � � . (6) 

Therefore, a WN process is called sometimes a pure 
random process (Bryson Jr. and Ho 1975). The ACF of a 
WN process is shown in Fig. 2. Finally, and taking into  
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Fig. 1: INS Mechanization and Error Modeling

Fig. 2: Autocorrelation Function (ACF) of A White Noise
Process



account the definition of ( )τ� , the variance of a WN 
process is infinite. This implies that such a process is 
only a theoretical concept (Andreyev 1969, Newland 
1975) or that the process is not physically realizable 
(Gelb 1974). In spite of that, however, WN can be used 
successfully to approximate some physical processes. 
Moreover, and as will be discussed in the following 
Section, some other random processes are generated by 
passing a WN sequence through linear filters. 

2.2 Shaping Filters 

As will be shown later in Section 3, the computed ACS 
of the INS sensor residual errors does not represent a 
white sequence process. Instead, these errors can be 
appropriately modeled by passing a WN w(t) through a 
certain shaping filter (linear dynamic system) to yield 
an output of time-correlated noise. This will change the 
correlation characteristics of the input sequence to fit 
the actual residual error component. In the following 
subsections, some random processes that are generated 
by passing a white sequence through shaping filters are 
discussed. Special attention will be given to Gauss-
Markov processes. 

2.2.1 Random Constant (RC) 

The RC is an unpredictable random quantity with a con-
stant value (Papoulias 2001). In this case, the sensor 
residual error b(t) is defined by the following difference 
equation: 

k 1 kb b+ = , (7) 

where b(k) is written as bk for simplicity. Substituting 
Equ. (7) into Equ. (3) results in: 

2
bb k bb(m) [b ] (0) Const.= = =� � �  (8) 

Thus, the RC is the special case of a shaping filter with a 
random initial condition. It is not really a filter, since 
it is an integration output with no input (Grewal and 
Andrews 2001). 

2.2.2 Random Walk (RW) 

For a RW process, the difference k 1 k(b b )+ − is a white 
sequence kw  (Shan 2002), i. e.: 

k 1 k kb b w+ = + . (9) 

Thus, for a very large number of data samples, Equ. (9) 
converges to: 

�
k

k 1 i
i 1

b +
=

= ∑ . (10) 

From Equ. (9), the RW process is generated by integrat-
ing uncorrelated random sequences. Using Equ. (10), the 
mean bµ  of an RW process is equal to zero. Taking into 
account that wi are uncorrelated sequences, the va-
riance 2

bσ  is computed as: 

�

�
� ��

2k k
2 2 2
b k 1 i w

i 1 i 1

[b ] ] k+
= =

 σ = = = = σ  
∑ ∑� � � . (11) 

Therefore, the RW process is not stationary since its 
variance is changing with the number of samples, and 
hence, the characteristics of the ACS cannot be used to 
completely define the process (Brown and Hwang 1997). 
Even though, the difference k 1 k(b b )+ − itself is station-
ary. 

2.2.3 Gauss-Markov (GM) 

GM processes are stationary processes that have expo-
nential ACFs. GM processes are useful in many engineer-
ing applications since they can describe many physical 
random processes with good approximation (Brown and 
Hwang 1997, Bethel et al. 2000). Most of the present 
inertial systems model the sensor residual errors as a 
1st order GM process with a fairly large correlation 
time (Schwarz and Wei 2001). The ACF of a zero-mean 
1st order GM process is defined as: 

1

1

2 ||
bb b( ) e−β ττ = σ� , (12) 

where β1 is the reciprocal of the process correlation time 

1cτ (
1 1

2
c bb b

1
at ( )

e
τ = τ τ = σ� ). This ACF is shown in 

Fig. 3. A 1st order GM process is widely used for model-
ing INS sensor errors since it has a very simple mathe-
matical description, which makes it easy to implement 
in the error model. Using a 1st order GM model, the 
sensor error is defined as (Salychev 2000): 

( ) 2
k 1 1 k 1 b kb 1 t b 2 t w+ = − β ∆ + β σ ∆ , (13) 

Fachbeiträge Nassar/El-Sheimy, Accuracy Improvement of Stochastic Modeling of Inertial Sensor Errors

zzffvv 3/2005   130. Jg.148

Fig. 3: ACF of a 1st Order GM Process



where ∆t is the sampling interval. However, it should 
be clarified here that the ACF expression of a 1st order 
GM process [Equ. (12)] was derived by implement- 
ing Equ. (1) on Equ. (13) with considering τ = ∆t and  
µb = µw = 0. 

A family of higher-order GM processes can be generated 
using Equ. (12). The ACF general formula for a GM pro-
cess of order p is represented by: 

p

p

p n 1p 1
p||2

bb b
n 0

(p 1)!(2 | |) (p n 1)!
( ) e

(2p 2)!n!(p n 1)!

− −−
−β τ

=

− β τ + −
τ = σ

− − −∑� . (14) 

However, Equ. (14) is given in Gelb (1974) but the term 
» (p n 1)!+ − « is missing from the numerator. Thus, the 
ACF of a GM process of any required order can be ob-
tained from Equ. (14). To compute the correlation time 

pcτ  in this case, Equ. (14) is solved analytically with the 

condition: 
p p

2
bb c b

1
( )

e
τ = σ� . The ACF and the corre-

sponding correlation time values for the GM process 
family are summarized in Tab. 1. To show the graphical 
characteristics of the ACF of different orders of GM 
processes, first a constant correlation time is assumed 
for all orders. Hence, the corresponding βp is computed 
for each order p using the formulae in Tab. 1. Then an 
ACF is generated for each order using Equ. (14). Assum-
ing a data length of 8 hours, Figs. 4a and 4b show the 
ACF of 1st to 5th order GM processes with a different 
assumed correlation time for each figure. 

 
 

Tab. 1: The ACFs and Corresponding Correlation Times for Different Order GM Processes 

Order p of 
GM Process 

Autocorrelation Function 

���
� ��))))  

Correlation 
Time 

��
�  

1 12 ||
be

−β τσ  
1

1
β

 

2 22 ||
b 2e (1 | |)−β τσ + β τ  

2

2.14619
β

 

3 32 || 2 2
b 3 3

1
e (1 | | | | )

3
−β τσ + β τ + β τ  

3

2.90463
β

 

4 42 || 2 2 3 3
b 4 4 4

2 1
e (1 | | | | | | )

5 15
−β τσ + β τ + β τ + β τ  

4

3.51265
β

 

5 52 || 2 2 3 3 4 4
b 5 5 5 5

3 2 1
e (1 | | | | | | | | )

7 21 105
−β τσ + β τ + β τ + β τ + β τ  

5

4.03422
β

 

: 
: 
: 

: 
: 
: 

: 
: 
: 

p p

p n 1p 1
p||2

b
n 0

(p 1)! (2 | |) (p n 1)!
e

(2p 2)! n! (p n 1)!

− −−
−β τ

=

− β τ + −
σ

− − −∑  
Solved for each p with the 

condition 
p p

2
b

bb c( )
e

στ =�  
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Fig. 4: The Generated ACFs for Different Orders of GM
Processes



2.2.4 Periodic Random (PR) 

The ACF for random processes that are known to have 
periodic behavior is represented by an exponential and 
periodic functions, such as: 

2 ||
bb b( ) e .cos( | |)−β ττ = σ α τ� , (15) 

where β and α are positive quantities, have the same 
dimension (1/time) and their values are chosen to fit an 
empirical ACS of the actual process experimental data. 
In contrast with the ACFs of GM processes that assume 
positive values only, the ACF of a PR process assumes 
negative values as well, which makes it a more general 
ACF that can correspond to a broader class of random 
variables (Andreyev 1969). Similarly as for GM pro-
cesses, ACFs are generated for PR processes using 
Equ. (15) assuming 8 hours of data and variable values 
for β and α. These ACFs are shown in Fig. 5. 

However, it should be mentioned here that a special 
PR process occurs when considering the particular case 
of a bandlimited WN process. The ACF of such process 
is given in Brown and Hwang (1997) as: 

bb bb

sin(2 W )
( ) 2W

2 W
π ττ =

π τ
� � , (16) 

where W is the physical bandwidth of the process. 

Since the PR process is defined by two parameters 
(β and α), two state variables are needed to represent 
the process, and hence, a PR process can be considered 
as a 2nd order process. Moreover, the ACF formulae of 
both PR and GM processes involve an exponential. 
Therefore, sometimes a 2nd order GM process is genera-
lized by combining it with a PR process. One example 
of such 2nd order GM general ACF is given in Grewal 
and Andrews (2001). It is of the form: 

2 ||
bb b

1
( ) e cos( | | )

cos
−β ττ = σ β τ −α

α
� , (17) 

where β and α are determined to fit a computed ACF  
of the actual process. A graphical representation of 
Equ. (17) with variable values of β and α is shown in 
Fig. 6. Compared to Fig. 4 and Fig. 5, Fig. 6 indicates 
clearly that the ACF of the generalized 2nd order GM 
process is a compromise between the ACFs of GM and 
PR processes. 

3 ACS of Inertial Experimental Data 

In the previous Section, the ACFs of a number of ran-
dom processes have been shown. As indicated before, 
the sensor residual errors of most inertial systems are 
assumed to follow a 1st order GM process. To investigate 
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Fig. 5: The Generated ACFs for Different Periodic
Random (PR) Processes

Fig. 6: The Generated ACFs for the Combined 2nd Order
GM and PR Processes



the validity of such an assumption, or in other words, 
to determine the appropriate random process for model-
ing INS sensor errors, the ACSs of some INS measure-
ments have been studied. Three Inertial Measuring Units 
(IMUs) are used for this purpose: a navigation-grade 
(high accuracy) IMU (Litton LTN 90-100 with a gyro 
drift of 0.01 deg/h), a high-end tactical-grade (medium 
accuracy) IMU (Honeywell HG1700 with a gyro drift  
of 1.0–10.0 deg/h) and a low-cost (low accuracy) IMU 
(Crossbow AHRS400CC-100 with a gyro drift of 
200 deg/h). For each IMU, 8 hours of static data was 
collected. After subtracting the mean of the measure-
ments for all sensors, the data was used for generating 
an ACS for each sensor. One sensor from each IMU (an 
accelerometer) is chosen to illustrate the obtained ACSs. 
For the rest of the sensors, similar ACSs were obtained. 

Figs. 7a–7c show these computed ACSs. Fig. 7 indicates 
clearly that a 1st order GM process may not be adequate 
in all cases to model inertial sensor errors. The shape of 
the ACS is often different from that of a 1st order GM 
process (Fig. 3). 

By inspecting Fig. 7, it appears that most of the com-
puted ACSs fall into the category of higher-order gene-
ralized GM processes or PR processes. As mentioned 
before, the required parameters for GM or PR process 
models (β and/or α) are determined based on the actual 
experimental data, i. e. by fitting an empirical ACS. 
However, Fig. 7 shows that the determination of an ac-
curate ACS from experimental data is rarely done due to 
the fact that the data collected is limited and finite. In 
turn, the obtained values for β or α will change with the 
change in data length used for computing the corres-
ponding ACS. 
 

4 ACS Accuracy of Inertial Experimental Data 

A more serious problem than the numerical difficulties 
is, however, a theoretical problem pointed out by Ben-
dat and Piersol (1971) and further discussed by Brown 
and Hwang (1997). For a Gaussian zero-mean random 
process, the following relation is satisfied: 

�

�

�bb

2 2
( ) bb( )d

∞

τσ ≈ τ τ∫
�

�
� , (18) 

where: 

bb

2
( )τσ

�
 ……  is the variance of bb( )τ�  (the ACF de-

termined from a finite record of experi-
mental data, i. e. the sample ACF). 

T …… is the time length of experimental data. 

bb( )τ�  …… is the theoretical ACF of the process   
(i. e. the ensemble ACF). 

Equ. (18) can be used to get a »rough« estimate of the 
needed amount of data to reach a certain desired accu-
racy (uncertainty level) of bb( )τ� . Obviously, Equ. (18) 
is valuable only if bb( )τ�  is known. Therefore, to illu-
strate the analysis, a 1st order GM process is assumed 
[ 12 ||

bb b( ) e−β ττ = σ� ]. Substituting this bb( )τ�  in Equ. (18) 
yields: 

� �

� �

� �
1

bb

2 2 4 2 ||
( ) bb b( )d e d

∞ ∞
− β τ

τσ ≈ τ τ ≈ σ τ∫ ∫
� �

�
�  

     �
�

�

��

� �

44
bb

σ τσ≈ ≈
β

. (19a) 

The accuracy (or uncertainty level) of bb( )τ�  is defined 
as the ratio of the standard deviation of bb( )τ�  (i. e. 

bb ( )τσ
�

) to the variance of the process (i. e. 
�

2σ ). By 
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Fig. 7: The Computed ACSs for High, Medium and Low
Accuracy Inertial Sensors



rearranging Equ. (19a) and taking into account the 
above definition of accuracy, we get: 

      ��
	

�bb

4
b2

( )τ

σ τ
σ ≈

�
 

�
�

�

�

bb

2
( ) 2

4
b

(accuracy)τσ τ
⇒ = ≈

σ
� . (19b) 

Therefore, if the desired uncertainty level is 10 % for 
example, the required time length T of experimental 
data will approximately equal 

�
�

	 2(accuracy)τ  

�
�

	 2(0.10)≈ τ
�
�

200≈ τ , i. e. 200 times the correlation 
time of the process. Assuming a reasonable correlation 
time of 1.0 hour, this means that 200 hours of data is 
required for estimating the ACS with 10 % accuracy. 
Taking into account the high data rate of INS sensors 
(50–400 Hz), it is unlikely that this requirement will be 
used in any practical work. The above analysis can be 
also performed for PR processes and GM processes of 
any order and it will lead to the same conclusion. 

On the other hand, Equ. (18) can be used to give an 
approximate estimation of the accuracy of the ACS ob-
tained from experimental data of known finite length T. 
In this case, bb( )τ�  is assumed to be known and the 
process parameters (β and/or α) are estimated from the 
obtained ACS bb( )τ� . To estimate the accuracy of the 
obtained ACSs in Fig. 7, a 1st order GM bb( )τ�  is as-
sumed again. In this case, Figs. 7a–7c show that the 
estimated correlation times are: 5/6, 4/3 and 7/4 hours, 
respectively. The accuracy of these ACFs is computed 
using Equ. (19b) as: accuracy 

� �
� �

	 � 	 
≈ τ ≈ τ  

�
�

0.5≈ τ . Substituting the above estimated correlation 
times, the approximate accuracy of the obtained ACSs 
are: 46 %, 58 % and 66 %, respectively. These numbers 
indicate that it is very difficult to obtain an accurate 
ACS from inertial experimental data. If higher-order GM 
processes were assumed instead, the computed ACS ac-
curacies will be even worse. Therefore, it is unlikely that 
the INS sensor errors can be accurately estimated by 
using the parameters of an ACS that has been deter-
mined from actual data. Hence, other methods rather 
than computing the ACS should be investigated. This 
will be discussed in the following Section. 
 

5 Autoregressive (AR) Processes 

To avoid the problem of inaccurate modeling of inertial 
sensor errors due to inaccurate ACS determination, 
another method is introduced in this Section. The me-
thod, known as Autoregressive (AR) process modeling, 
has been introduced almost 30 years ago but it has not 
been used before for modeling errors of all INS sensors 
inside the KF navigation error model. Compared to the 
other random processes discussed in this paper, AR 

processes have more modeling flexibility since they are 
not always restricted to only one or two parameters. 
In many applications with quantities that involve time 
series of measurements, AR processes are used to model 
(estimate) the stochastic part of such quantities (Box 
and Jenkins 1976, Granger and Andersen 1978, Young 
1984, Klees and Broersen 2002). Inertial data is a time 
series of measurements that contain both systematic and 
stochastic error parts. Therefore, AR models will be used 
in this Section to describe the INS sensor stochastic 
errors. Based on the obtained ACSs in Fig. 7, it has been 
decided to model the randomness of the inertial mea-
surements in this Section using an AR process of order 
higher than one. In the time domain, the AR process is 
written as: 

p

n 0
n 1

y(k) y(k n) x(k)
=

= − α − + β∑ , (20a) 

i. e. 

1 2y(k) y(k 1) y(k 2) .......= − α − − α − −  

     p 0y(k p) x(k)− α − + β . (20b) 

To apply AR models, and in analogy with the discussed 
shaping filters, the input to the AR model x(k) will be a 
sequence of zero-mean white sequence wk while the 
output y(k) will be the inertial sensor residual bias bk. 
The problem in this case is to determine the AR model 
parameters (predictor coefficients) αn. This is performed 
by minimizing the prediction error e(k) between the 
original signal y(k) represented by the »AR process« of 
Equ. (20) and the estimated signal ŷ(k) , which is 
estimated by an »AR model« of the form: 

p

n
n 1

ŷ(k) y(k n)
=

= − α −∑ . (21) 

The cost function for this minimization problem is the 
sum of squared errors ���ε  of e(k), sometimes called 
the energy of e(k). Several methods have been reported 
to estimate the αn parameter values by fitting an AR 
model to the input data. In Nassar et al. (2003), three 
different methods (Yule-Walker, Covariance and Burg’s) 
were investigated. The results showed that Burg’s me-
thod gives the minimum estimation mean square error 
and hence this method will be the one to be used in this 
paper. In addition, it has been shown in Nassar et al. 
(2003) that due to the high level of existing noise in all 
inertial measurements, de-noising of inertial sensor data 
using wavelet analysis is crucial for an accurate deter-
mination of the AR model parameters. Therefore, all AR 
parameters in the paper as well as all plotted ACSs in 
Section 3 were estimated using de-noised data. 

To show the analysis of AR model parameter determi-
nation, one set of the three static data used before for 
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computing the ACSs in Fig. 7 is utilized. The chosen set 
is the LTN 90-100 IMU data, however, similar results 
were obtained for the other two IMUs. Also, one sensor 
was selected as an example (y-accelerometer). The AR 
model parameters were then estimated as well as the 
corresponding prediction Root Mean Square Error 
(RMSE) for all sensors using Burg’s method. Different 
AR model orders are used in the analysis. The other sen-
sors gave similar results. The y-accelerometer prediction 
RMSE using Burg’s method with different AR model 
orders (1 to 7) is plotted in Fig. 8. The figure indicates 
that the RMSE is close to its minimum value after 
applying only a 3rd or 4th order AR model. This is very 
important from a numerical point of view since the 
addition of the corresponding INS sensor error states in 
this case into the used KF algorithm will not affect its 
stability. 

 

6 Results 

To test the accuracy of the different random processes 
discussed in Section 2 and the efficiency of the suggest-
ed AR processes in modeling inertial sensor errors, an-
other one hour of static data (rather than the 8 hours 
data used before) was collected by both the LTN 90-100 
and the HG1700 IMUs. The first 20 minutes of each data 
set were used for alignment while the last 40 minutes 
were used for testing. For each IMU, the data (without 
any de-noising) was processed with using ZUPTs as up-
dates for the KF. Sensor errors are modeled first by one 
of the random processes: WN, RC, RW as well as by the 
commonly used 1st order GM process. Then, these errors 
are modeled by AR processes of different orders (1 to 4). 
Position errors are then computed for each model. The 
statistical parameters of the LTN 90-100 and HG1700 
position errors obtained from each model are given in 
Tab. 2. In addition, Fig. 9 shows the LTN 90-100 posi-
tion errors using 1st order GM model and AR models of 
different orders. 

From Tab. 2, it is clear that a WN process is not ad-
equate for modeling inertial sensor biases of both IMUs. 
This fact agrees with the obtained ACSs of Fig. 7, which 
indicated a correlation between residual biases. For the 
LTN 90-100, Tab. 2 shows that a RC process is not ad-
equate either. Moreover, for both IMUs, RW and 1st or-
der GM processes provide similar results. However, this 
can be explained by comparing the coefficients of bk in 
Equ. (9) of a RW and Equ. (13) of a 1st Order GM and 
taking into account that the correlation time of the 
1st order GM process is fairly large and the inertial data 
has a high data rate (64 Hz). Therefore, the term 
( )11 t− β ∆  of Equ. (13) will be very close to 1.0, which is 
equivalent in this case to a RW process. For the 
HG1700, the RC process gave similar results to RW and 
1st order GM processes. In this case, and since these 
three processes are 1st order shaping filters, this means 
that the addition of a driving white sequence for 1st 
order random processes does not have a major effect for 
the HG1700 IMU. 

For both the LTN 90-100 and HG1700 IMUs, 1st order 
GM and 1st order AR models provide the same numeri-
cal results. This is expected since both models are of the 

  

Tab. 2: Position Errors Using Different Stochastic 
Processes for Modeling Sensor Errors 

LN 90-100 IMU  HG1700 IMU 

Errors (m)  Errors (m) 
Sensor Err. 
Modeling 

Mean Max RMS  Mean Max RMS 

WN 0.89 1.57 0.97 0.91 1.51 0.96 

RC 0.09 0.18 0.10 0.42 0.88 0.44 

RW 0.04 0.08 0.04 0.42 0.88 0.44 

1st Ord. GM 0.04 0.08 0.04 0.42 0.88 0.44 

1st Ord. AR 0.04 0.08 0.04 0.42 0.88 0.44 

2nd Ord. AR 0.01 0.03 0.02 0.23 0.91 0.26 

3rd Ord. AR 0.01 0.03 0.01 0.23 0.67 0.26 

4th Ord. AR 0.04 0.09 0.05 

 

0.41 1.09 0.45 
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Fig. 8: AR Model Prediction RMSE Fig. 9: LTN 90-100 Position Errors Using Different
Stochastic Sensor Error Models



same order. Compared to the 1st order GM and AR 
model results, the LTN 90-100 position errors are im-
proved by 64 % and 70 %, respectively, after applying 
AR models of 2nd and 3rd orders. In case of the HG1700, 
the improvement is 40 % and 42 %, respectively. This 
indicates the efficiency of the AR models of orders 
higher than one. However, the worst AR results are 
obtained from the 4th order AR model. This could be the 
result of two possible causes. The first one is that the KF 
starts to diverge due to the instability and model com-
plexity resulting from adding more error states. The 
second cause is that the 4th order AR model does not 
decrease the prediction RMSE obtained from the 3rd 
order AR model. This could result in an over-parameter-
ization of the model introducing oscillating features 
into the solution. 

7 Stability of Stochastic Model Parameters 

In the previous Section, all obtained results showed that 
the performance of AR processes of an appropriate order 
is better than the performance of all other implemented 
processes, including the most widely used 1st order GM 
process. However, AR processes and the other imple-

mented random processes have the common problem 
that the process model coefficients (parameters) are 
estimated from experimental data. In Section 2, it has 
been addressed that the obtained values of the para-
meters of the other random processes (especially GM 
processes) will change with the change in data length 
used for their computation. Therefore, the question 
arises if this is also true for the estimated parameters of 
AR processes. 

To answer this question, the AR model parameters 
should be computed using different data time lengths. 
For this purpose, the measurements of one sensor of the 
three data sets used in Section 2 are chosen. The se-
lected sensor measurements are the 8-hour data span of 
the LTN 90-100 y-accelerometer. All other sensors show 
similar results. For the analysis, a 3rd order AR model is 
assumed, and hence 3 coefficients (α1, α2 and α3) are 
estimated for different time lengths of the data (1, 2, 
3, 4, 5, 6, 7 and 8 hours). Therefore, for each coefficient, 
8 values are computed. To check the stability of the 
AR model coefficients, the computed 8 values of each 
coefficient are compared to a reference value of such 
coefficient. The reference value here is the one used in 
the analysis performed in the previous Section, i. e.  
the value that corresponds to 8 hours. The comparison 
is performed by obtaining the percentage resulting  
from dividing the 8 values of each coefficient by its 
reference value. The results of such analyses are shown 
in Fig. 10. 

Fig. 10 indicates that the variations between the 
values of each AR model parameter, obtained using dif-
ferent data time lengths, are very small. The maximum 
variation occurs in α3 with an amount of 0.0062 %, 
which is obviously negligible. Moreover, Fig. 11 shows 
for all coefficients (α1, α2 and α3) that their values start 
to converge after using 5 hours of data and are almost 
constant after using 7 hours of data. This fact is very 
important since it confirms that there is no need to use 
larger data sets for computing the AR model parameters. 
Finally, to assess that this is not the case for other ran-
dom processes discussed in Section 2, the same analysis 
is performed using the same sensor data and assuming a 
1st order GM process. 

As shown in Section 2, the 1st order GM model para-
meter β1 is obtained from the computed ACS. To investi-
gate the variation of β1 in this case, the ACS is com-
puted using different time lengths of data (i. e. 1, 2, 3, 4, 
5, 6, 7 and 8 hours, respectively), and then β1 is ob-
tained for each time length. Similar to the AR model 
analysis, the comparison between the 8 values of β1 is 
performed by dividing each value by the value of β1 
obtained using the 8 hours data (the reference value). 
The resultant percentages are shown in Fig. 11. Com-
pared to Fig. 10, Fig. 11 depicts that the variation level 
of β1 is very large and more data is needed to reach the 
convergence level. Again, this agrees with the results 
obtained before in Section 2. 
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Fig. 10: Variation of the 3rd Order AR Model Parameters

Fig. 11: Variation of the 1st Order GM Model Parameter



8 Conclusions 

The overall objective of this article was to improve the 
accuracy obtained in modeling inertial sensor errors. 
Detailed analyses of different stochastic processes have 
been investigated and implemented. In the paper, it has 
been shown that the parameters of any random process 
that are estimated based on an actual Autocorrelation 
Sequence (ACS) are changing with the data length. 
Therefore, it is not possible to estimate the inertial 
sensor errors accurately using the parameters of such an 
ACS. In addition, when studying the ACS of inertial 
data, it appears that the frequently used 1st order Gauss-
Markov (GM) process is not always adequate for mo-
deling inertial sensor errors. Compared to a 1st order GM 
model, the obtained INS position errors using the sug-
gested Autoregressive (AR) models of 2nd and 3rd orders 
were better by 40 % to 70 %. Finally, the analysis 
showed that the variation of the AR model parameters is 
very small compared to the corresponding parameters of 
GM processes that are estimated from an actual ACS of 
the same data, which confirms the stability of the AR 
model parameters. 

 

Acknowledgement 
The authors wish to thank Mr. Matthias Weigelt at the 
Department of Geomatics Engineering, the University of 
Calgary, for translating the paper summary to German. 

 

References 
Anderson, B. D. O. and Moore, J. B.: Optimal Filtering. Prentice-Hall 

Inc., 1979. 
Andreyev, N. I.: Correlation Theory of Statistically Optimal Systems. 

W. B. Saunders Company, 1969. 
Bendat, J. S. and Piersol, A. G.: Random Data: Analysis and Measure-

ment Procedures. John Wiley & Sons Inc., 1971. 
Bethel, J. S., Lee, C. and Landgrebe, D. A.: Geometric Registration of 

Hyperspectral Airborne Pushbroom Data. IAPRS, Vol. XXXIII, 
Amsterdam, The Netherlands, 2000. 

Box G. E. P. and Jenkins, G. M.: Time Series Analysis, Forecasting and 
Control. Holden-Day Inc., 1976. 

Brown, R. G. and Hwang, P. Y. C.: Introduction to Random Signals and 
Applied Kalman Filtering. John Wiley & Sons Inc, 1997. 

Bryson, Jr., A. E. and Ho, Y. C.: Applied Optimal Control. Hemisphere 
Publishing Corporation, Washington, D. C., USA, 1975. 

Gelb, A.: Applied Optimal estimation. The M. I. T. Press, Massachusetts 
Institute of Technology, Cambridge, Massachusetts, USA, 1974. 

Granger, C. W. J. and Andersen, A. P.: An Introduction to Bilinear Time 
Series Models. Vandenhoeck & Ruprecht in Göttingen, Germany, 
1978. 

Grewal, M. S. and Andrews, A. P.: Kalman Filtering: Theory and Prac-
tice Using Matlab. John Wiley & Sons, Inc., 2001. 

Klees, R. and Broersen, P.: How to Handle Colored Noise in Large 
Least-Squares Problems. Delft University Press, Delft University of 
Technology, The Netherlands, 2002. 

Nassar, S., Schwarz, K. P.; Noureldin, A. and El-Sheimy, N.: Modeling 
Inertial Sensor Errors Using Autoregressive Models. ION NTM 
2003, Anaheim, California, USA, 116–125, January 22–24, 2003. 

Newland, D. E.: An Introduction to Random Vibration and Spectral 
Analysis. Longman Group Limited, London, England, 1975. 

Orfanidis, S. J.: Optimum Signal Processing: An Introduction. Mac-
millan Publishing Company, New York, USA, 1988. 

Papoulias, F. A.: Modern Control Systems. Informal Lecture Notes for 
ME4811, Naval Postgraduate School, Monterey, California, USA, 
2001. 

Salychev, O. S.: Applied Estimation Theory in Geodetic and Navigation 
Applications. ENGO 699.52, Dept. of Geomatics Engineering, Uni-
versity of Calgary, Calgary, Alberta, Canada, 2000. 

Schwarz, K. P. and Wei, M.: INS/GPS Integration for Geomatics. ENGO 
623, Dept. of Geomatics Engineering, University of Calgary, Cal-
gary, Alberta, Canada, 2001. 

Shan, J.: Introduction to Time Series. Stat 207, Stanford University, 
USA, 2002. 

Young, P.: Recursive Estimation and Time-Series Analysis, An Intro-
duction. Springer-Verlag, Germany, 1984. 

 
 
 
 
 
 
 
 

 
Authors’ addresses 
Dr. Sameh Nassar, Research Associate 
The University of Calgary 
Department of Geomatics Engineering 
2500 University Drive, N.W. 
Calgary, Alberta, Canada, T2N 1N4 
Phone: 1 (403) 220-8794 
Fax: 1 (403) 284-1980 
snassar@ucalgary.ca 
 
Dr. Naser El-Sheimy, Associate Professor 
The University of Calgary 
Department of Geomatics Engineering 
2500 University Drive, N.W. 
Calgary, Alberta, Canada, T2N 1N4 
Phone: 1 (403) 220-7587 
Fax: 1 (403) 284-1980 
naser@geomatics.ucalgary.ca 

FachbeiträgeNassar/El-Sheimy, Accuracy Improvement of Stochastic Modeling of Inertial Sensor Errors

130. Jg.   3/2005   zzffvv 155


