
Koch, Kusche, Boxhammer, Gundlich – Parallel Gibbs Sampling for
Computing and Propagating Large Covariance Matrices

Summary
The Gibbs sampler for inverting large matrices of normal
equations and for propagating the resulting covariance matri-
ces is modified for parallel computing. The matrix times vec-
tor multiplications for generating the error vectors of the un-
known parameters are replaced by matrix times matrix mul-
tiplications so that the computationally efficient BLAS and
ATLAS subroutines can be applied. To judge the accuracy of
the computed covariance matrix a criterion is derived which
gives information about the significant digits obtained dur-
ing the process of the parallel computing. Finally, based on
the blocking technique for reducing correlations between the
generated error vectors a storage scheme is used which allows
the inversion of matrices of normal equations of any size. The
parallel Gibbs sampler has been applied for the inversion of
normal equations as they result from the data analysis for
the new satellite gravity missions. With a parallel computer
consisting of 15 nodes the speed of the computations could
be increased by a factor of 7.4 in comparison to a single com-
puter.

Zusammenfassung
Das Gibbs-Verfahren zur Inversion großer Normalgleichungs-
matrizen und zur Fehlerfortpf lanzung mittels der resultie-
renden Kovarianzmatrizen wird für paralleles Rechnen mo-
dif iziert. DieMultiplikation vonMatrizenmit Vektoren zur Ge-
nerierung der Fehlervektoren für die unbekannten Parameter
wird durch die Multiplikation von Matrizen ersetzt, so dass die
rechentechnisch eff izienten BLAS und ATLAS Unterprogram-
me benutzt werden können. Um die Genauigkeit der berech-
neten Kovarianzmatrix zu beurteilen, wird ein Kriterium abge-
leitet, das während des parallelen Rechnens die Information
über die erzielten signif ikanten Stellen verschafft. Schließlich
wird noch mit Hilfe der Zerlegung der Matrizen in Teilmatri-
zen, die zur Verringerung der Korrelationen zwischen generier-
ten Fehlervektoren dient, ein Speicherschema für die Matrizen
entwickelt, das die Inversion von Normalgleichungen beliebi-
ger Größe erlaubt. Das parallelisierte Gibbs-Verfahrenwird auf
Normalgleichungen angewendet, wie sie aus der Datenanalyse
der neuen Satellitenmissionen für Schwerefeldbestimmungen
resultieren. Mit einem parallelen Rechner, der aus 15 Knoten
besteht, konnte bei den Berechnungen die Rechengeschwin-
digkeit um den Faktor von 7.4 im Vergleich zu einem einzigen
Rechner erhöht werden.

1 Introduction

The new satellite missions for determining the gravity
field of the earth and its temporal variations necessi-

tate the estimation of several ten thousands of unknown
parameters describing the gravity field. The gradiometer
data to be collected by the GOCE satellite, for instance,
should allow the determination of the spherical harmonic
coefficients of the gravity field up to degree and order 240
which results in about 60 000 unknown parameters (ESA
1999, p. 85). Computing this large number of unknown
parameters either by solving the system of normal equa-
tions or, if an assembly of normal equations is avoided, by
iterative methods will be computationally quite demand-
ing. In addition, for the quality control of the solutions
not only the estimates but also the variances and covari-
ances of the unknown parameters are needed.

Furthermore, quantities will be derived from the solu-
tions for the gravity field like geoid undulations or satel-
lite orbits. The variances and covariances of these quan-
tities are also needed. They are obtained from error prop-
agation either in a linear or in a nonlinear form. These
computations together with obtaining the covariance ma-
trix for the unknown parameters of the gravity field are
much more demanding than computing the estimates of
the unknown parameters.

Even without supercomputers these computational
tasks can be solved if ordinary computers like work-
stations or PCs are combined for parallel computing in
clusters or grids, see for instance Plank (2002). Ideally, the
time for the computations can be reduced by a scalability
factor which equals the number of nodes in the cluster. Of
course, this factor cannot be reached because of the ne-
cessary transfer of data between the nodes which is slow
in comparison to the transfer of data within a node. In
addition, not all computations can be done in parallel.
Nevertheless, the speed of the computations can be con-
siderably increased by parallel computing.

Parallel computing has been simplified during the last
years by specifying the message-passing interface (MPI).
This interface enables the communication between the
computing nodes of a parallel computer formed by a
cluster of computers. MPI allows messages between the
nodes to be sent and received, see for instance Gropp et
al. (1999a; 1999b). In a simple setup MPI provides the
means to establish a master which distributes the data to
the clients which are formed by the rest of the nodes of
the parallel computer. The clients are then able to perform
special tasks and send the results back to the master. A
complete implementation of the MPI specifications is the
LAM/MPI programming environment by The LAM/MPI
Team (2003).

For statistical applications the LAPACK software (An-
derson et al. 1999) of linear algebra is very helpful be-
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cause it provides for instance the solution of linear
equations, the Cholesky factorization of symmetric pos-
itive definite matrices, and their inversions. To run these
programs on parallel computers the ScaLAPACK library
has been developed (Blackford et al. 1997). Because of
the large number of unknown parameters describing the
earth’s gravity field the core storage of a cluster might not
be large enough to keep the coefficient matrices or the
matrices of normal equations. However, for out-of-core
matrices only solvers based on factorizations are provided
by ScaLAPACK, but no inversions.

Monte Carlo algorithms, on the other hand, are well
suited for parallel computing. This is quite understandable
because Monte Carlo methods allow to draw independent
samples from a given distribution which are subsequently
subject to statistical inference. Instead of one computer
many computers can generate these samples, the results
have only to be collected at the end of the computations.

For computing and propagating large covariance ma-
trices, Gundlich, Koch and Kusche (2003) suggested
Markov Chain Monte Carlo methods, that is the Gibbs
sampler. Error vectors are generated for the unknown pa-
rameters, for instance the harmonic coefficients of the
gravity field of the earth, from which the covariance ma-
trix is estimated. The error vectors can also be applied
for error propagations so that the covariance matrix is
not needed at all for that purpose. This is especially im-
portant, since test computations suggest that the required
number of error vectors may be less than one tenth of the
number of unknown parameters to compute the covari-
ance matrix and the error propagations with sufficient
accuracy. For quick-look computations, even a few error
vectors may be sufficient. Thus, storing and handling the
covariance matrix which is huge for many unknown pa-
rameters can be avoided for error propagations. Another
advantage, already mentioned above, is the fact that the
Gibbs sampler can be easily applied in parallel comput-
ing. In fact, that was the motivation for developing the
Markov Chain Monte Carlo method for computing and
propagating large covariance matrices.

In the following chapter, the main formulas of
Gundlich, Koch and Kusche (2003) are collected for easier
reference. The third chapter introduces modifications for
the parallel computing. It also gives a method to obtain
the accuracy of the covariance matrix during the process
of generating the samples. Chapter 4 reports numerical
experiments. The conclusions finally follow in the last
chapter.

2 Gibbs Sampler for Generating Covariance
Matrices

Random errors are generated for the unknown parameters
describing the gravity field of the earth so that the un-
known parameters are also considered as random quanti-

ties. This is the concept of Bayesian statistics, which will
be applied in the following. It will be assumed that the un-
known parameters are estimated in a linear model. Let X
be the n × u coefficient matrix of the linear model with
full column rank, β the u × 1 vector of unknown pa-
rameters, y the n × 1 vector of observations which will
be assumed as normally distributed, and P its positive
definite n × n weight matrix, the posterior distribution
for the vector β is then given by the normal distribution,
see for instance Koch (2000, p. 90)

β|y ∼ N(β̂, D(β|y)) (2.1)

where β̂ is the estimate of β given by the well known
formula of least squares adjustment

β̂ = (X ′PX)−1X ′Py (2.2)

and D(β|y) the covariance matrix of β

D(β|y) = (X ′PX)−1 = N−1 = V (2.3)

with N = X ′PX being the matrix of normal equations
for β. The inverse V of N, i. e. the covariance matrix
D(β|y), needs to be determined. The u × 1 vector e of
errors of the unknown parameters β is introduced by

e = β̂ −β (2.4)

so that the distribution follows because of (2.1), see for
instance Koch (1999, p. 122)

e ∼ N(0, V) (2.5)

with expectation E(e) = 0 and covariance matrix

D(e) = D(β|y) = V . (2.6)

If x is a random vector with expectation E(x), its covari-
ance matrix is defined by

D(x) =
∫
X

(x − E(x))(x − E(x))′p(x)dx (2.7)

where X denotes the domain of the integration and p(x)
the probability density function for x. This integral can
be evaluated numerically by the Monte Carlo integration.
Thus, by drawing M samples x(k) with k ∈ {1, . . . , M}
from p(x), the estimate D̂(x) of D(x) is obtained by

D̂(x) =
1
M

M

∑
k=1

(x(k) − E(x))(x(k) − E(x))′ . (2.8)

If we generate M samples e(k) with the distribution (2.5),
the estimate V̂ of the inverse V of N, that is the estimate
D̂(β|y) of the covariance matrix of β, is found accord-
ingly by

D̂(β|y) = D̂(e) = V̂ =
1
M

M

∑
k=1

e(k)e(k)′ . (2.9)
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This is the basic idea of computing covariance matrices
by Monte Carlo methods. If for error propagations the co-
variance matrix D( f (β)|y) of the transformation f (β)
of the unknown parameters β is needed, we obtain its
estimate

D̂( f (β)|y) = D̂( f (e))

=
1
M

M

∑
k=1

(
f (e(k)) − Ê( f (e))

)(
f (e(k)) − Ê( f (e))

)′

(2.10)

with

Ê( f (e)) =
1
M

M

∑
k=1

f (e(k))

where f (β) or f (e) might be a linear or nonlinear func-
tion of β. In contrast to the law of error propagation
FV F ′ for the linear function Fβ, the inverse V of the
matrix N of normal equations is not needed in (2.10).

Drawing samples e(k) from (2.5) requires the inverse
V to be known. However, this can be avoided (Harville
1999) if we apply the Gibbs sampler (Geman and Geman
1984), a special Markov Chain Monte Carlo method, see
also Koch (2000, p. 204) or Smith and Roberts (1993), be-
cause the Gibbs sampler uses conditional distributions.
We divide the error vector e into r subvectors ei with
i ∈ {1, . . . , r} and the matrix N of normal equations and
its inverse V accordingly into r × r subblocks

e =

∣∣∣∣∣∣∣
e1
...

er

∣∣∣∣∣∣∣
, N =

∣∣∣∣∣∣∣
N11 . . . N1r

...
. . .

...
Nr1 . . . Nrr

∣∣∣∣∣∣∣
,

V =

∣∣∣∣∣∣∣
V11 . . . V1r

...
. . .

...
V r1 . . . V rr

∣∣∣∣∣∣∣
. (2.11)

The Gibbs sampler is iteratively applied

do k = 1, M

draw e(k)
1 from p(e1|e(k−1)

2 , . . . , e(k−1)
r ) ,

...
draw e(k)

l from p(el |e(k)
1 , . . . , e(k)

l−1,

e(k−1)
l+1 , . . . , e(k−1)

r ) ,
...

draw e(k)
r from p(er|e(k)

1 , . . . , e(k)
r−1) ,

next k.
(2.12)

The starting values are el = 0 because of E(el) = 0. The
probability density functions in (2.12) are obtained from
the conditional normal distribution, see Gundlich, Koch
and Kusche (2003)

e(k)
l |e(k)

1 , . . . , e(k)
l−1, e(k−1)

l+1 , . . . , e(k−1)
r

∼ N
(
− N−1

ll

(
∑
j<l

N l je
(k)
j + ∑

j>l
N l je

(k−1)
j

)
, N−1

ll

)
.

(2.13)

If the vector z(k)
l contains independently generated ran-

dom numbers with normal distributions N(0, 1), random
numbers for e(k)

l with the conditional distribution (2.13)
are computed by the transformation, see for instance
Koch (2000, p. 187)

e(k)
l = Gl z

(k)
l − N−1

ll

(
∑
j<l

N l je
(k)
j + ∑

j>l
N l je

(k−1)
j

)

(2.14)

with Gl being a lower triangular matrix, the Cholesky fac-
tor of N−1

ll ,

N−1
ll = GlG

′
l . (2.15)

For M → ∞, the joint distribution for e(k) =
|e(k)′

1 , . . . , e(k)′
r |′ converges to the normal distribution

(2.5), see Geman and Geman (1984).
In general, subsequent samples for e(k) will be cor-

related which affects the convergence rate of the Gibbs
sampler. Thus, after an initial burn-in phase where all
samples are discarded, only each s-th sample is used in
the Monte Carlo integration. The size of s depends on the
correlation between subsequent samples for e(k) which
can be computed if the inverse V is known as shown by
Gundlich, Koch and Kusche (2003). Highly correlated un-
known parameters cause correlations between the sam-
ples e(k) of their generated error vectors. By applying a
blocking technique (Liu 2001, p. 131), i. e. by clustering
errors of correlated unknown parameters in subvectors el ,
the correlation can be considerably reduced. This is the
reason for dividing the error vector e into the subvectors
el according to (2.11).

There is another reason for dividing the error vector e
into subvectors el . It allows the estimation by condition-
ing (Harville 1999) which reduces the variance of the esti-
mate (2.9) because a certain part of the integral of (2.7) is
solved analytically by using the expected values of condi-
tional density functions. The estimation by conditioning
gives instead of (2.9) the subblocks in (2.11) of the co-
variance matrix V of the unknown parameters β by, see
Gundlich, Koch and Kusche (2003)

V̂ ll = N−1
ll +

1
M

M

∑
k=1

µ
(k)
l µ

(k)′
l

and

V̂ l j =
1
M

M

∑
k=1

µ
(k)
l e(k)′

j ,

for j, l ∈ {1, . . . , r} , j �= l (2.16)
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with

µ
(k)
l = −N−1

ll

(
∑
j<l

N l je
(k)
j + ∑

j>l
N l je

(k−1)
j

)
. (2.17)

As can be seen from (2.16), the estimation by condition-
ing starts off a covariance matrix given by the inverse
blocks N−1

ll on the diagonal. Because of the symmetry,
only the elements on the diagonal and above the diag-
onal are computed. The samples e(k)

j are obtained with
the Gibbs sampler (2.12) and the transformation (2.14) by
taking after a burn-in phase each s-th sample of the iter-
atively generated samples.

It should be mentioned, finally, that for normal equa-
tion systems in gravity modelling very efficient ordering
schemes for the unknown parameters exist. This means,
from satellite mission characteristics one knows a priori
which parameters will be highly correlated.

3 Modifications for Parallel Computing

Generating the error vectors by the Gibbs sampler (2.12)
requires the multiplication of matrices and vectors, that
is the multiplication of rows and columns. Because of the
many transfers of elements between the cache and the
memory of a processor, these multiplications cannot be
as efficiently organized as the multiplication of matrices.
Block algorithms can then be applied which operate on
rectangular subblocks of matrices and keep the subblocks
as long as possible in the cache of a processor. To op-
timize matrix times matrix and also matrix times vector
multiplications, basic linear algebra subroutines (BLAS)
have been developed, see for instance Demmel (1997,
p. 66). For an efficient implementation on an individual
computer, the automatically tuned linear algebra software
(ATLAS) is available (Whaley et al. 2000).

Because of the efficient multiplication of matrices by
BLAS and ATLAS subroutines, the error vectors e(k) in
(2.9) should not be generated in one single run of the
Gibbs sampler (2.12), but in several parallel runs. Thus,
samples will not be generated for only one error vec-
tor leading by the s-th sample to the sample e(k) in
(2.9), but for p error vectors, giving as s-th samples

e(k)
(1), e(k)

(2), . . . , e(k)
(p). Thus, instead of one burn-in phase

there are p burn-in phases. We collect the samples e(k)
(m)

with m ∈ {1, . . . , p} in the u × p matrix E(k)

E(k) =
∣∣∣e(k)

(1), e(k)
(2), . . . , e(k)

(p)

∣∣∣ (3.1)

and obtain

E(k)E(k)′ =
p

∑
m=1

e(k)
(m)e

(k)′
(m) . (3.2)

The number p of parallel runs of the Gibbs sampler is
selected such that the number M of samples used for es-

timating the covariance matrix divided by p gives an in-
teger. Thus, instead of (2.9) one gets

V̂ =
1
M

M/p

∑
k=1

E(k)E(k)′

=
1
M

( p

∑
m=1

e(1)
(m)e

(1)′
(m) + . . . +

p

∑
m=1

e(M/p)
(m) e(M/p)′

(m)

)
.

(3.3)

The generated error vector e(k)
(m) in (3.3) has to be subdi-

vided according to (2.11) leading to

e(k)
(m) =

∣∣∣∣∣∣∣∣∣

e(k)
1(m)
...

e(k)
r(m)

∣∣∣∣∣∣∣∣∣
. (3.4)

The vectors e(k)
l(m) for l ∈ {1, . . . , r} are collected in the

matrix E(k)
l

E(k)
l =

∣∣∣e(k)
l(1), e(k)

l(2), . . . , e(k)
l(p)

∣∣∣ . (3.5)

Before generating the samples, the inverses N−1
ll in (2.14)

and their Cholesky factors Gl are computed by LAPACK
routines which also apply the BLAS subprograms. The
matrices N−1

ll and N l j in (2.14) and (2.17) are then mul-
tiplied to obtain the matrix Rl j

Rl j = −N−1
ll N l j for j, l ∈ {1, . . . , r} . (3.6)

By replacing the vectors e(k)
j and e(k−1)

j by the matrices

E(k)
j and E(k−1)

j from (3.5), we obtain instead of the vector

µ
(k)
l in (2.17) the matrix U(k)

l

U(k)
l = ∑

j<l
Rl jE

(k)
j + ∑

j>l
Rl jE

(k−1)
j . (3.7)

The estimates (2.16) of the subblocks of the covariance
matrix then follow with (3.3) by

V̂ ll = N−1
ll +

1
M

M/p

∑
k=1

U(k)
l U(k)′

l

and

V̂ l j =
1
M

M/p

∑
k=1

U(k)
l E(k)′

j

for j, l ∈ {1, . . . , r} , j �= l . (3.8)

The matrix E(k)
l in (3.5) is obtained from (2.14) by

E(k)
l = GlZ

(k)
l + U(k)

l (3.9)

with

Z(k)
l =

∣∣∣z(k)
l(1), z(k)

l(2), . . . , z(k)
l(p)

∣∣∣ (3.10)
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where the vectors z(k)
l(m) for m ∈ {1, . . . , p} contain inde-

pendently generated random numbers with normal distri-
butions N(0, 1). Instead of the matrix times vector mul-
tiplications in (2.14), (2.16), and (2.17), we now have ma-
trix times matrix multiplications for generating the ran-
dom realizations by (3.9) with (3.7) and for estimating the
covariance matrix by (3.8).

There is a third reason besides reducing the correlation
between samples and estimating by conditioning for sub-
dividing the error vector e and the matrix of normal equa-
tions and its inverse according to (2.11). The matrices of
normal equations obtained for high-resolution modelling
of the gravity field are too huge to keep them in the core
storage of an ordinary computer. The matrices have to be
divided into subblocks according to (2.11) and the sub-
blocks have to be stored on disks. For the computations
discussed here, the size of the blocks are selected such that
the multiplication (3.6) of N−1

ll N l j, which is performed
before generating the samples, fits into the core storage.
For generating the samples, the matrices E(k)

l in (3.5) and

U(k)
l in (3.7) use afterwards the core storage of Rl j. It is

thus determined how many samples can be generated at
most in parallel runs, which gives the maximum number
for p in (3.1).

It is obvious from (3.7) to (3.9) that the matrices E(k)
l of

error vectors may be generated not only by one computer,
but in parallel by several ones. Let us assume that we have
z computers in a cluster, each one with core storage and
disks. We then obtain the matrix E(k)

lz of error vectors,

where the matrices E(k)
l(o) from (3.5) with o ∈ {1, . . . , z} of

error vectors of each of the z computers of the cluster are
collected

E(k)
lz =

∣∣∣E(k)
l(1), E(k)

l(2), . . . , E(k)
l(z)

∣∣∣ . (3.11)

Accordingly, we get instead of (3.7)

U(k)
lz =

∣∣∣U(k)
l(1), U(k)

l(2), . . . , U(k)
l(z)

∣∣∣ . (3.12)

If we select the number p of parallel runs of the Gibbs
sampler such that M/(pz) gives an integer, we find in-
stead of (3.8) the estimate by conditioning

V̂ ll = N−1
ll +

1
M

M/(pz)

∑
k=1

U(k)
lz U(k)′

lz

and

V̂ l j =
1
M

M/(pz)

∑
k=1

U(k)
lz E(k)′

jz

for j, l ∈ {1, . . . , r} , j �= l . (3.13)

Given the number M of samples for estimating the co-
variance matrix, each computer of the cluster needs to
generate in case of parallel processing according to (3.13)

only M/(pz) samples while a single computer would
have to generate according to (3.8) M/p samples.

When estimating the covariance matrix V of the un-
known parameters β, it is necessary to get an idea of the
accuracy of the estimate in order to determine the number
M of samples. Gundlich, Koch and Kusche (2003) used,
among other criteria, the scaled Frobenius norm d

d =
( 1

u2max(vii)2

u

∑
i=1

u

∑
j=1

(v̂i j − vi j)2
)1/2

(3.14)

where u denotes the number of unknown parameters, v̂i j

and vi j the elements of V̂ and V and where V = N−1

from (2.3) is obtained by inverting the matrix N of nor-
mal equations. The quantity d gives approximately the
variance of the estimate v̂i j averaged over all elements of
V̂ and scaled by the maximum variance max(vii) because
of |vi j| ≤ max(vii). By taking the square root, the scaled
averaged standard deviation is obtained. Thus, d indicates
the number of significant digits with respect to the max-
imum variance, i. e. the number of digits not distorted by
errors of the estimate. For instance, d = 1 × 10−3 means
on the average three significant digits in the estimated
elements v̂i j of V̂ .

For computing d from (3.14), the inverse V = N−1 is
needed. It can only be assumed as given for test compu-
tations because it is the aim to determine V or to generate
error samples for an error propagation. However, the es-
timated covariance matrix V̂ follows from (3.13) as the
mean value of the samples. The variance of the mean can
be easily obtained, if the samples are independent. This
may be approximately assumed because of the applied
blocking technique and the fact that only each s-th gen-
erated sample enters the estimation (3.13). The variances
of the elements of V̂ from (3.13) are therefore computed
as the variance of a mean value.

We go back to (2.16), which is identical with (3.13),
where the difference

ˆ̄V ll = V̂ ll − N−1
ll =

1
M

M

∑
k=1

µ
(k)
l µ

(k)′
l

and

V̂ l j =
1
M

M

∑
k=1

µ
(k)
l e(k)′

j

for j, l ∈ {1, . . . , r} , j �= l (3.15)

are estimated as mean values. Let ˆ̄vi j be an element of ˆ̄V ll
for l ∈ {1, . . . , r}. It is obtained from (3.15) by

ˆ̄vi j =
1
M

M

∑
k=1

µ
(k)
li µ

(k)
l j (3.16)

if µ
(k)
li denotes the i-th element in the vector µ

(k)
l . The

variance V( ˆ̄vi j) of the mean value ˆ̄vi j is given by, see for
instance Koch (1999, p. 164)

V( ˆ̄vi j) =
1

M(M − 1)

M

∑
k=1

(
ˆ̄vi j −µ

(k)
li µ

(k)
l j

)2
. (3.17)
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Let now v̂mn be an element of V̂ l j. Its variance follows
accordingly from (3.15) by

V(v̂mn) =
1

M(M − 1)

M

∑
k=1

(
v̂mn −µ

(k)
lm e(k)

jn

)2
. (3.18)

The average variance is obtained by summing over the
variances of all u(u + 1)/2 estimated elements in V̂ . If we
scale in addition the average variance by the maximum
value max(v̂ii) of the variances of V̂ and take the square
root, we find

d̄ =
( 2

u(u + 1)M(M − 1)max(v̂ii)2

[
∑
i, j

M

∑
k=1

( ˆ̄vi j −µ
(k)
li µ

(k)
l j )2

+ ∑
m,n

M

∑
k=1

(v̂mn −µ
(k)
lm e(k)

jn )2
])1/2

. (3.19)

This measure d̄ of accuracy for estimating the covari-
ance matrix approximates, according to its derivation, the
Frobenius norm d in (3.14). The measure d̄ gives like d on
the average the number of significant digits of the ele-
ments of V̂ not distorted by errors of the estimate.

As explained for the estimate (2.16), there is a com-
putationally more efficient way than determining d̄ by
(3.19). To see this, we rewrite the first sum of squares of
residuals in (3.19) by (3.16)

M

∑
k=1

(
ˆ̄vi j −µ

(k)
li µ

(k)
l j

)2

= M ˆ̄v2
i j − 2 ˆ̄vi j

M

∑
k=1

µ
(k)
li µ

(k)
l j +

M

∑
k=1

µ
(k)2

li µ
(k)2

l j

= − 1
M

( M

∑
k=1

µ
(k)
li µ

(k)
l j

)2
+

M

∑
k=1

µ
(k)2

li µ
(k)2

l j (3.20)

and accordingly the second sum of squares of residuals in
(3.19)

M

∑
k=1

(
v̂mn −µ

(k)
lm e(k)

jn

)2

= − 1
M

( M

∑
k=1

µ
(k)
lm e(k)

jn

)2
+

M

∑
k=1

µ
(k)2

lm e(k)2

jn . (3.21)

The first sum on the right-hand side of (3.20) is the square
of the element with indices i, j in the sum of the first
matrix product in (3.13) and the first sum of (3.21) the
square of the elements with m, n in the sum for the second
matrix product in (3.13), thus

( M

∑
k=1

µ
(k)
li µ

(k)
l j

)2
=

( M/(pz)

∑
k=1

U(k)
lz U(k)′

lz

)2

i, j
(3.22)

( M

∑
k=1

µ
(k)
lm e(k)

jn

)2
=

( M/(pz)

∑
k=1

U(k)
lz E(k)′

lz

)2

m,n
. (3.23)

If we replace the elements of the matrices U(k)
lz and E(k)

lz

by their squares, which will be denoted by U(k)2

lz and

E(k)2

lz , we find the second sums in (3.20) and (3.21) as in
(3.22) and (3.23) by

M

∑
k=1

µ
(k)2

li µ
(k)2

l j =
( M/(pz)

∑
k=1

U(k)2

lz U(k)2′

lz

)
i, j

(3.24)

M

∑
k=1

µ
(k)2

lm e(k)2

jn =
( M/(pz)

∑
k=1

U(k)2

lz E(k)2′

lz

)
m,n

. (3.25)

By summing over the u(u + 1)/2 elements on the diago-
nal and above the diagonal of the matrices on the right-
hand sides of (3.22) to (3.25), we obtain the sum of squares
in (3.19). Thus, the sum of squares is efficiently computed
by the sum of elements of matrices obtained by matrix
multiplications.

Already during the process of generating the samples,
one would like to get information about the accuracy
of the estimates in order to adjust M if necessary. The
measure d̄ in (3.19) is therefore not only computed when
all M samples have been generated, but already when in
the p parallel runs of the Gibbs sampler in each proces-
sor of the cluster the s-th sample is obtained, that is for
k = 1, 2, . . . , M/(pz). The sum of squares of each com-
putation is saved and added so that with M samples d̄ in
(3.19) is obtained. However, this will be only an approx-
imate measure d̄a because for k = 1, k = 2 and so on
only approximate values ˆ̄vi ja and v̂mna for the estimates
v̂i j and v̂mn in (3.19) are available so that approximate
sums of squares are computed and added, thus

d̄a =
( 2

u(u + 1)M(M − 1)max(v̂iia)2

[
∑
i, j

M

∑
k=1

( ˆ̄vi ja −µ
(k)
li µ

(k)
l j )2

+ ∑
m,n

M

∑
k=1

(v̂mna −µ
(k)
lm e(k)

jn )2
])1/2

. (3.26)

Computations of examples have shown that nevertheless
a good agreement exists between d̄a from (3.26) and the
Frobenius norm d from (3.14).

4 Test Computations

Examples have been computed by a cluster of 15 PCs of
the Institute for Theoretical Geodesy of the University of
Bonn. Each PC contains a Pentium 4 processor with 2.2
GHz, 1 GB of core storage and a 40 GB disk. One com-
puter, the master, is connected with the network of the
Institute and with the local network of the cluster con-
sisting of the master and the 14 clients. The communica-
tion between master and clients is realized by a 100 MBit
Ethernet.
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For estimating the coefficients of a spherical harmonic
expansion of the earth’s gravity field, two matrices of
normal equations were generated and used for the test
computations, a CHAMP matrix and a GRACE matrix. The
CHAMP matrix originates from an expansion of the har-
monic coefficients up to degree and order 90 so that 8 277
unknown harmonic coefficients have to be estimated. The
GRACE matrix is based on an expansion up to degree and
order 140 so that 19 877 unknown parameters result.

The CHAMP and GRACE satellites are equipped with
on-board GPS receivers of geodetic quality, allowing very
precise orbit determination (POD). The GRACE satellite
pair, in addition, measures the intersatellite range-rate us-
ing a high-precision K-band microwave instrumentation.
Whereas a number of preliminary gravity models have al-
ready been published from CHAMP data, including error
estimates, at the time of writing only very few results are
available from GRACE. For our purpose, which is demon-
strating the feasibility of our method under realistic con-
ditions, we introduce some simplifications. This is allowed
since we do not process actual data but are interested in
error propagation. The normal equations for CHAMP have
been assembled from about 80 days in 2002, assuming a
truncation of the spherical harmonic series at L = 90.
We have used CHAMP orbits from GFZ and assume that
the energy conservation approach is applied to convert
the POD information, which are cartesian x, y, z coordi-
nates in a pseudo-inertial system, and corresponding ve-
locities, into in-orbit residual potential values. The ma-
trix of normal equations contains in this case products
of associated Legendre functions evaluated in the satel-
lite’s positions. For building this normal equation matrix,
it is not relevant what type of orbit, whether kinematic,
reduced-dynamic or dynamic is used. For interpreting the
corresponding covariance matrix one should bear in mind
that we assume a standard deviation of 1 m2/s2 for the
residual potential observations. This would correspond to
a somewhat pessimistic estimate of what can be obtained
from differentiating kinematic orbits. For the GRACE nor-
mal equation matrix we have used a simulated 30 days
orbit (Ilk et al. 2003). The degree of truncation was set
to L = 140 in this case. It is assumed that only the in-
tersatellite range-rate is used as observation. According
to the energy conservation principle, applied to a pair of
satellites, this range-rate is proportional to the potential
difference between the two satellite positions. Again, the
normal equation matrix can be built up from products
of associated Legendre functions. It is known that many
corrections have to be made to use this approach for ac-
tual gravity recovery purposes, but for error propagation
it is sufficient to retain the functional model in its sim-
ple form. For interpretation of the corresponding covari-
ance matrix, it is important to know that we assume a
standard deviation of 0.01 m2/s2 for the residual poten-
tial difference observations, corresponding to 1 µm/s for
the range-rate observation. However, we have compared
the error degree variance from our simulation with those

from the first published GRACE gravity model (Reigber et
al. 2003) and found agreement of better than one order of
magnitude for the whole range of the model.

The harmonic coefficients are arranged as usual in a
parameter estimation in satellite geodesy first by increas-
ing order and then by increasing degree. This provides for
most satellite observation techniques a block-dominant
structure of the covariance matrix of the harmonic co-
efficients. This structure is well suited for the estimate
(3.13) by conditioning which starts from a block diago-
nal covariance matrix. The blocking technique which was
applied therefore collects the harmonic coefficients order
by order. The size of the blocks is determined as described
in the previous chapter by the size of the core storage of
the master and the clients of the cluster. Given their core
storage the maximum number of unknown parameters in
one block turns out to be about 6 000.

The parallel computations in the cluster are organized
as follows: the master reads the blocks of the normal
equations defined by (2.11) on the diagonal and above
the diagonal with a number of unknown harmonic co-
efficients not exceeding about 6 000. The master stores
these blocks and sends them to the clients where they
are also stored. To prepare for generating the samples,
the matrices N−1

ll N l j in (3.6) and the Cholesky factors
Gl in (2.15) are computed by the master and the clients
and stored on disks. These computations could also be
organized in a parallel computing. However, it would ne-
cessitate much data transfer between the master and the
clients which is slow in comparison to the computation
in a node so that computer time would only be saved for
a large number of blocks of normal equations.

The master then generates and distributes random val-
ues to each client to start the parallel runs of the Gibbs
sampler at the master and the clients. Whenever p par-
allel runs have been finished, each computer in the clus-
ter computes by (3.26) the measure d̄a of accuracy of the
estimation. For error propagations, whenever the clients
finish the p runs, they send the error vectors used to es-
timate the covariance matrix to the master where they
are stored. When M samples have been generated, the
master collects the sum of the squares of the residuals of
the clients to compute by (3.26) the measure d̄a of ac-
curacy based on all M samples. If the whole covariance
matrix is needed, the sums in (3.13) of each client are sent
to the master where they are added to give the final es-
timate of the covariance matrix. If the variances of the
unknown parameters have to be known, only the sums
for the blocks on the diagonal are given to the master.
As test computations have shown, the parallel computing
reduces the time of the computations of a single com-
puter by a factor of about 1/7.4 if only the error vectors
are stored. The factor 1/7.4 does not lie closer to 1/15
because of the computations discussed above to prepare
according to (3.6) generating the samples. These compu-
tations are performed by the master and all clients so that
during this time no computer time is saved by the parallel
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processing. The same holds true for the time needed by
the master to distribute data to the clients and to collect
the results.

The CHAMP matrix was divided into four blocks with
the first block N11 containing 6 021 unknown harmonic
coefficients for the orders m = 0 to m = 43. The last
block N22 contains the rest of the 8 277 unknown pa-
rameters for the orders up to 90. Gundlich, Koch and
Kusche (2003) found out that the number M of samples
does not have to exceed one tenth of the number of un-
known parameters to ensure a sufficient accuracy for the
estimation which was considered to be three significant
digits. This was confirmed for the CHAMP matrix. With
M = 825 samples, the approximate measure d̄a of accu-
racy from (3.26) was computed to be d̄a = 1.4 × 10−3.
This is an excellent approximation of the Frobenius norm
d = 1.5 × 10−3 from (3.14) with the inverse N−1 for the
8 277 unknown parameters obtained by LAPACK routines.

The M = 825 samples are obtained from the 15 com-
puters in the cluster by 55 parallel runs of the Gibbs sam-
pler. With these 55 samples, d̄a from (3.26) is determined
by each computer to be approximately d̄a = 5.0 × 10−3.
This result gives a good indication what can be expected
with 825 samples because of 5.0 × 10−3/(825/55)1/2 =
1.3× 10−3. Every fifth generated sample was taken to es-
timate the covariance matrix according to (3.13) because
the maximum correlation between consecutive samples
equals 0.668 and drops to 0.141 for samples which are
five samples apart. Accordingly, a burn-in phase of ten
samples was chosen at the beginning of each of the 55
parallel runs of the Gibbs sampler.

The 825 error vectors applied to estimate the inverse
of the CHAMP matrix from (3.13) were also used for
an error propagation according to (2.10). They repre-
sent random realizations of the errors of spherical har-
monic coefficients, as they can be derived from CHAMP
data by applying the energy conservation principle to
pre-processed satellite orbits, as described earlier. It is
common to propagate these errors into those of geoid
heights or gravity anomalies in a gridded representa-
tion in the space domain. We have f (e) = Fe and
E( f (e)) = 0 in (2.10) with the matrix F containing in
case of geoid heights as elements R cos(mλ)Plm(sinφ)
and R sin(mλ)Plm(sinφ) evaluated on the λ,φ-grid
with λ being the longitude and φ the latitude. For gravity
anomalies, the entries of F are GM

R2 cos(mλ)Plm(sinφ)
and GM

R2 sin(mλ)Plm(sinφ), where R is the earth’s mean
radius, GM the gravitational constant times the earth’s
mass, and Plm are the fully normalized Legendre func-
tions. Fig. 1 shows on the left-hand side the standard
deviations of geoid heights in [m], computed on a 1◦ ×
1◦ grid, from 10, 196, and 825 error vectors. On the
right-hand side, the corresponding standard deviations
for gravity anomalies in [mgal] are given. We propagate
only the committed errors up to a spherical harmonic
truncation degree of 70, whereas the solution itself was
computed to harmonic degree of 90. This is because the

first real CHAMP solutions confirm that almost no signal
power is included above this degree. It is obvious that al-
ready after about 200 samples, that is when the ratio of
samples to unknown parameters appears roughly as 2%,
we obtain a good picture of the propagated standard de-
viations in the space domain. One should note that the
stripe pattern in the figures is to a large extend caused by
the groundtrack distribution of the satellite and therefore
does not represent an artefact. For 825 samples, the ac-
curacy of the standard deviations surpasses 1 cm for the
geoid undulations and 1 mgal for the gravity anomalies,
which means three significant digits.

The GRACE matrix was split up into 16 blocks. The first
block N11 on the diagonal contains 6 071 harmonic co-
efficients from order m = 0 up to order m = 23. The next
block N22 on the diagonal extends from order m = 24 to
m = 52 with the unknown parameters 6 072 to 12 045 if
numbered consecutively. The third block N33 collects the
harmonic coefficients from order m = 53 to m = 98 with
the parameters 12 046 to 18 071, and the last block N44
has the parameters for m = 99 to m = 140 from 18 072 to
19 877. With M = 1995 samples, whose number equals
about one tenth of the number of unknown parameters,
the approximate measure d̄a of accuracy from (3.26) was
d̄a = 2.2× 10−5, which means more than four significant
digits for the estimates. The M = 1995 samples were ob-
tained by the 15 computers in the cluster through 133
parallel runs of the Gibbs sampler. With these 133 sam-
ples, d̄a from (3.26) is determined by each computer to
be approximately d̄a = 7.7 × 10−5. This result indicates
what can be expected with M = 1995 samples because
of 7.7 × 10−5/(1995/133)1/2 = 2.0 × 10−5.

The Frobenius norm d in (3.14) and the correlation be-
tween samples could not be computed because the GRACE
matrix did not fit into the core storage of the comput-
ers which were available so that the inverse could not be
computed. As for the CHAMP matrix, every fifth gene-
rated sample was used to estimate the covariance matrix
by (3.13) and a burn-in phase of ten samples was allowed
at the beginning of each of the 133 parallel runs of the
Gibbs sampler.

The 1995 error vectors used for estimating the inverse
of the GRACE matrix by (3.13) were also applied for an
error propagation according to (2.10). These error vectors
represent random realizations of the errors of spherical
harmonic coefficients, as they were derived from GRACE
data following our set-up described earlier in this chapter.
Again these errors are propagated into corrresponding er-
rors of geoid heights and gravity anomalies on a global
grid. We have f (e) = Fe and E( f (e)) = 0 in (2.10) with
the matrices F containing the same elements as given
above for the error propagation of the CHAMP data. Fig. 2
shows on the left-hand side the standard deviations of
geoid heights in [m] computed on a 1◦ × 1◦ grid from
10, 415, and 1995 error vectors. On the right-hand side,
the corresponding standard deviations for gravity anoma-
lies in [mgal] are given. Again, after about 400 samples,
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Fig. 1: Propagated standard deviations for geoid heights [m] (left) and gravity anomalies [mgal] (right) from 80 days of
CHAMP data with L = 70 (solved 90). Upper row after 10 samples, middle row after 196 samples, lower row after 825
samples.
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Fig. 2: Propagated standard deviations for geoid heights [m] (left) and gravity anomalies [mgal] (right) from 30 days of
simulated GRACE data with L = 140. Upper row after 10 samples, middle row after 415 samples, lower row after 1995
samples.



that is when the ratio of samples to unknown parame-
ters approaches roughly 2%, we get already a very good
approximation of the propagated standard deviations in
the space domain. As for the CHAMP results, the accu-
racy gained with 1995 error vectors are three significant
digits. It should be emphasized that the figures represent
error propagations from the full variance covariance ma-
trix although this matrix was never stored nor completely
built up.

The time needed to invert the CHAMP matrix for 8 277
unknown parameters and GRACE matrices for 12 045,
18 071 and 19 877 unknown harmonic coefficients and
to store the error vectors applied for the inversion was
used to estimate the increase of computer time as a func-
tion of the increase of the unknown parameters. If µ de-
notes the ratio of the increase of unknown parameters,
one could expect that the computer time increases by a
factor of about µ3 because mostly matrix multiplications
are needed for generating the samples. However, the co-
variance matrix is symmetric and only the elements on
the diagonal and above the diagonal are estimated. In
addition, the blocks N ll on the diagonal, which need to
be inverted, are symmetric. Our test computations have
therefore shown that the factor by which the computer
time increases is only about 0.7µ3. Applying this fac-
tor, the time to invert a matrix of normal equations for
60 000 unknown harmonic coefficients and to store about
6 000 error vectors for the error propagation would take
less than two days of parallel computing on the cluster of
computers described above.

5 Conclusions

In our test computations we estimated covariance matri-
ces for 8 277 harmonic coefficients of the earth’s grav-
ity field from CHAMP data and for 19 877 harmonic co-
efficients from generated GRACE data. In both cases it
turned out that the number of generated error vectors
for the harmonic coefficients does not have to exeed one
tenth of the number of coefficients to ensure an accuracy
of the elements of the estimated covariance matrix and
of the errors of geoid undulations and gravity anomalies
from the error propagation better than three significant
figures. Thus, for error propagations, we do not have to
handle the u × (u + 1)/2 elements of the covariance ma-
trix, but only the u × u/10 components of the error vec-
tors, which is about one fifth. For the cluster of 15 com-
puters applied in the test computations, inverting a ma-
trix of normal equations for 60 000 unknown harmonic
coefficients and storing 6 000 error vectors for error prop-
agations will take less than two days. Investigations are
under way to reformulate the parallel Gibbs sampler for
problems where an explicit assembly of the matrices of
normal equations is avoided, i. e. replaced by using the
design matrix and its transpose.

Fachbeiträge Koch/Kusche/Boxhammer/Gundlich, Parallel Gibbs Sampling for …

zzffvv 1/2004   129. Jg.42

References
Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J.,

Du Croz J., Greenbaum A., Hammarling S., McKenney A. and So-
rensen D.: LAPACK User’s Guide. SIAM, Philadelphia, 1999.

Blackford L. S., Choi J., Cleary A., D’Azevedo E., Demmel J., Dhillon I.,
Dongarra J., Hammarling S., Henry G., Petitet A., Stanley K., Wal-
ker D. and Whaley R. C.: ScaLAPACK User’s Guide. SIAM, Philadel-
phia, 1997.

Demmel J. W.: Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

ESA: Gravity Field and Steady-State Ocean Circulation Mission. ESA
Publications Division, ESA SP-1233(1), ESTEC, Noordwijk, 1999.

Geman S. and Geman D.: Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans Pattern Anal
Machine Intell, PAMI-6: 721–741, 1984.

Gropp W., Lusk E. and Skjellum A.: Using MPI. MIT Press, Cambridge,
1999a.

Gropp W., Lusk E. and Thakur R.: Using MPI-2. MIT Press, Cambridge,
1999b.

Gundlich B., Koch K. R. and Kusche J.: Gibbs sampler for computing
and propagating large covariance matrices. J. Geodesy, 77: 514–528,
2003.

Harville D. A.: Use of the Gibbs sampler to invert large, possibly sparse,
positive definite matrices. Linear Algebra and its Applications, 289:
203–224, 1999.

Ilk K. H., Visser P. and Kusche J.: Final Report, Special Commission 7,
Satellite Gravity Field Missions. Travaux IAG, Vol. 32, General and
technical reports 1999–2003, Sapporo, Japan, 2003.

Koch K. R.: Parameter Estimation and Hypothesis Testing in Linear
Models, 2nd Ed. Springer, Berlin, 1999.

Koch K. R.: Einführung in die Bayes-Statistik. Springer, Berlin, 2000.
Liu J. S.: Monte Carlo Strategies in Scientific Computing. Springer, Ber-

lin, 2001.
Plank G.: Implementation of the pcgma-package on massive parallel

systems. In: ESA-Project »From Eötvös to mGal«, Final-Report. ESA/
ESTEC Contract No. 14287/00/NL/DC, 183–216, 2002.

Reigber Ch., Schmidt R., Flechtner F., König R., Meyer U., Neumayer
K. H., Schwintzer P. and Zhu S. Y.: First EIGEN gravity field model
based on GRACE mission data only. Geophysical Research Letter, in
preparation, 2003.

Smith A. F. M. and Roberts G. O.: Bayesian computation via the Gibbs
sampler and related Markov Chain Monte Carlo methods. J Royal
Statist Society, B 55: 3–23, 1993.

The LAM/MPI Team: LAM/MPI user’s guide, version 7.0, 
http://www.lam-mpi.org, 2003.

Whaley R. C., Petitet A. and Dongarra J. J.: Automated empirical opti-
mization of software and the ATLAS project. 
http://math-atlas.sourceforge.net, 2000.

Authors’ adresses
Prof. Dr.-Ing. Dr.-Ing. E. h. mult. Karl-Rudolf Koch (em.)
Institute for Theoretical Geodesy, University of Bonn
Nussallee 17, 53115 Bonn, Germany
koch@theor.geod.uni-bonn.de

Ass. Prof. Dr.-Ing. Jürgen Kusche
Physical, Geometrical, and Space Geodesy, Delft University of Technology
Kluyverweg 1, P. O. Box 5058, 2600 GB Delft, The Netherlands
j.kusche@citg.tudelft.nl

Dipl.-Ing. Christian Boxhammer
Institute for Theoretical Geodesy, University of Bonn
Nussallee 17, 53115 Bonn, Germany
box@mail.geod.uni-bonn.de

Dr.-Ing. Brigitte Gundlich
Mathematical Geodesy and Positioning, Delft University of Technology
Kluyverweg 1, P. O. Box 5058, 2600 GB Delft, The Netherlands
b.gundlich@geo.tudelft.nl


